COGEO STUDIO GEOLOGICO

Dott. Cocetti Marcello - Dott. Cocetti Pier Luigi Via Giardini Sud n° 127 - 41026 Pavullo nel Frignano (MODENA) TEL. 0536/324537 - E-MAIL cogeo @fastwebnet.it

Geologica Geotecnica Sismica

(CONFORME AI PUNTI 6.1, 6.2, 6.3 DELL'ALLEGATO B.2.1 DEL BURERT N° 153)

OGGETTO : PROPOSTA DI INSERIMENTO NEL POC 2015/2020 DEL

COMUNE DI PAVULLO NEL FRIGNANO

LOCALITÀ : VERZANELLA PIANTONA - ANS 1.13

COMUNE : PAVULLO NEL FRIGNANO

COMMITTENTE : GAUDENZI PAOLO ED ANNA, BONA MARIA

PROGETTO : SUCCI GEOM BRUNO

INDICE

1. RELAZIONE GEOLOGICA

- 1.1 INQUADRAMENTO GEOMORFOLOGICO
- 1.2 INQUADRAMENTO GEOLOGICO
- 1.3 IDROLOGIA E IDROGEOLOGIA
- 1.4 PROCESSI EROSIVI E GRADO DI STABILITA'
- 1.5 INDAGINI GEOGNOSTICHE E PARAMETRI NOMINALI

2. RELAZIONE SISMICA

- 2.1 CLASSIFICAZIONE SISMICA (DM 14/01/2008)
 - 2.1.1 Classificazione del Suolo in base alle Vs30
- 2.2 SPETTRO DI RISPOSTA ELASTICO (DM 14/01/2008)
- 2.3 MICROZONAZIONE SISMICA II° LIVELLO

3. RELAZIONE GEOTECNICA

- 3.1 DATI DI PROGETTO
 - 3.1.1 Studi eseguiti
 - 3.1.2 Parametri Caratteristici
- 3.2 CALCOLI DI STABILITA'
 - 3.2.1 Modello Stratigrafico Geotecnico
 - 3.2.2 Calcoli di Stabilità
 - 3.2.3 Considerazioni su Calcoli

4. CONCLUSIONI

RIFERIMENTI NORMATIVI

Circ. 07/03/08 - Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008.

DM 14/01/2008 (Norme Tecniche per le Costruzioni)

DAL RER 112/2007 (Indirizzi per gli studi di microzonazione sismica)

O.P.C.M. n° 3274 del 20 Marzo 2003 (Normativa antisismica)

D.M.LL.PP. 11/03/1988

D.M. 21/01/1981

Circ. LL.PP. n° 21597/81

Circ. R.E.R nº 12831

R.D. 03/12/23 n° 3267 e succ. mod. e integr.

T.L. 27/06/1985 n° 312

RIFERIMENTI BIBLIOGRAFICI

-La Geologia del versante Padano dell'Appennino Settentrionale

Università degli Studi di Modena - Istituto di Geologia

-Appennino Tosco-Emiliano. Guide Geologiche Regionali.

A cura della Società Geologica Italiana

- -Schema Introduttivo alla Geologia delle Epiliguridi dell'Appennino Modenese e delle Aree Limitrofee Mem.Soc.Geol. It 39 (1987), 215-244, 21 ff.
- -Schema Introduttivo alla Geologia delle Liguridi dell'Appennino Modenese e delle Aree Limitrofee Mem.Soc.Geol. It 39 (1987), 91-125, 27 ff.
- -I Melange dell'Appennino Settentrionale dal T.Tresinaro al T.Sillaro.

Mem.Soc.Geol. It 39 (1987), 187-214, 19 ff.

RIFERIMENTI CARTOGRAFICI

CARTOGRAFIA CTR Scala 1:25000. TAVOLA 236-NE

CARTOGRAFIA CTR Scala 1:10000. SEZIONE 236030

CARTOGRAFIA CTR Scala 1:5000. ELEMENTO 236033

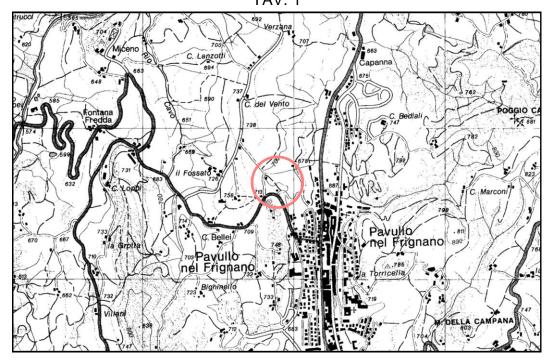
ESTRATTO CATASTALE Scala 1:2000. COMUNE DI PAVULLO NEL FRIGNANO. FOGLIO 67; MAPPALI .

CARTA GEOLOGICO-SCHEMATICA DELL'APPENNINO MODENESE E ZONE LIMITROFE. Scala 1:100000. Istituto di Geologia dell'Università di Modena

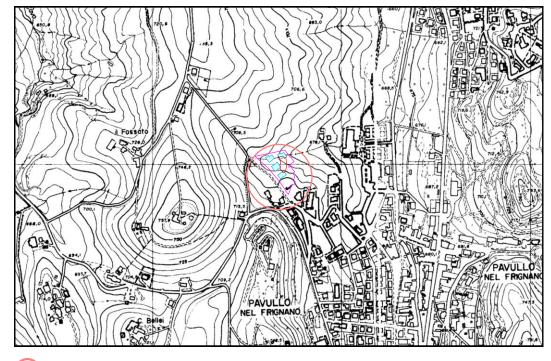
CARTA GEOLOGICA DELL'APPENNINO EMILIANO-ROMAGNOLO 1:10000. SEZIONE 236030

CARTA GEOLOGICA PROGETTO CARG a Scala 1:10000. SEZIONE 236030

CARTA DEL DISSESTO (PTCP). SEZIONE 236030


ALLEGATI

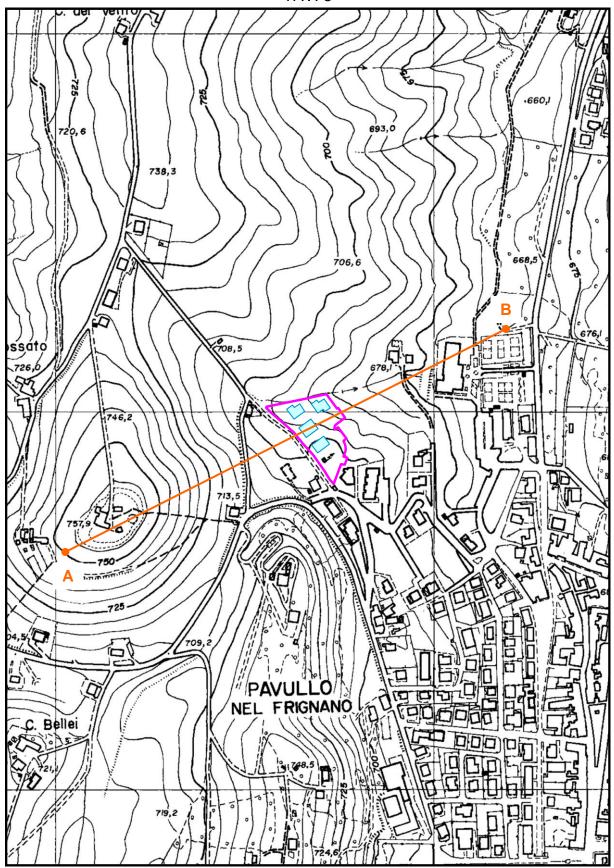
TAV. 1, 2	- Localizzazione del sito su cartografia CTR
TAV. 3	- Morfometria del Versante a scala 1:5000
TAV. 4	- Carta Geologica CARG a scala 1:10000
TAV. 5	- Carta del Dissesto a scala 1:10000
TAV. 6	- Carta del Rischio Sismico a scala 1:10000
TAV. 7	- Carta Forestale a scala 1:10000
TAV. 8	- Carta Microzonazione Sismica I° Livello - PSC
TAV. 9a	- Carta Microzonazione sismica II Livello PGA/PGAo (Fx) - PSC
TAV. 9b	- Carta Microzonazione sismica II Livello SI/SIo (Fy) - PSC
TAV. 9c	- Carta Microzonazione sismica II Livello SI/SIo (Fz) - PSC
TAV. 10	- Estratto Catastale con prove geognostiche
TAV. 11	- Planimetria con prove geognostiche
ALLEGATO A	A - Prove Penetrometriche Dinamiche
ALLEGATO	B - Registrazioni Sismiche, Spettri Elastici


CARTOGRAFIA C.T.R.

Scala 1:25'000 TAVOLA 236no TAV. 1

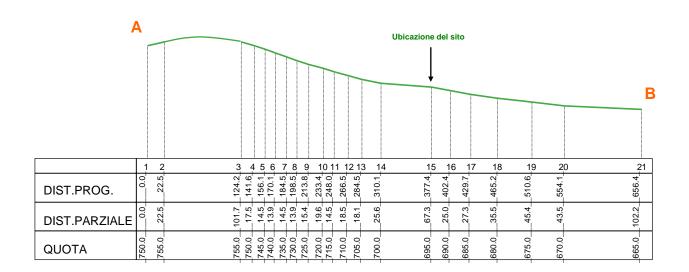
CARTOGRAFIA C.T.R.

Scala 1:10'000 SEZIONE 236060


UBICAZIONE DEL SITO

CARTOGRAFIA C.T.R.

Scala 1:5'000 ELEMENTO 236061

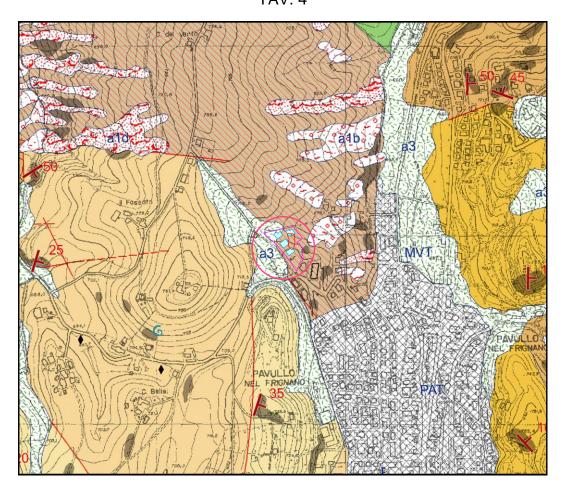

TAV. 3

SEZIONE TOPOGRAFICA

Scala X = 1: 5000 Scala Q = 1: 5000

MORFOMETRIA DEL VERSANTE

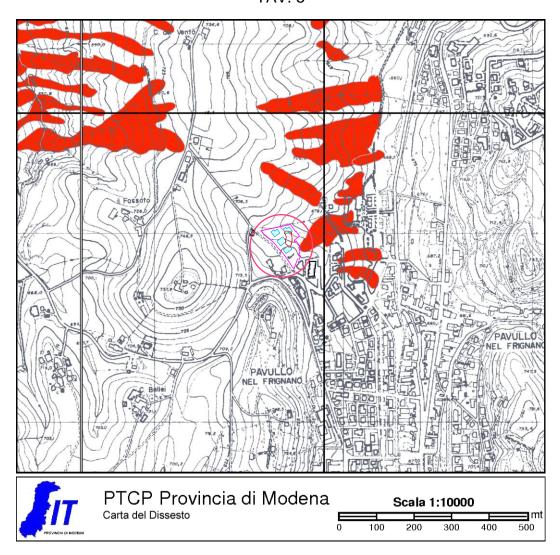
RILEVATO DALLA CARTA TECNICA REGIONALE


Scala 1:5000

Pun.n°	D.Prog.	D.Parz.	Quota	Acc.%	Acc.°
0002.0	0022.5	0022.5	0755.0	022.3	012.6
0003.0	0124.2	0101.7	0755.0	0.000	0.000
0004.0	0141.6	0017.5	0750.0	028.6	016.0
0005.0	0156.1	0014.5	0745.0	034.5	019.0
0006.0	0170.1	0013.9	0740.0	035.9	019.7
0007.0	0184.5	0014.5	0735.0	034.5	019.0
0.8000	0198.5	0013.9	0730.0	035.9	019.7
0009.0	0213.8	0015.4	0725.0	032.6	018.0
0010.0	0233.4	0019.6	0720.0	025.5	014.3
0011.0	0248.0	0014.5	0715.0	034.5	019.0
0012.0	0266.5	0018.5	0710.0	027.0	015.1
0013.0	0284.5	0018.1	0705.0	027.7	015.5
0014.0	0310.1	0025.6	0700.0	019.6	011.1
0015.0	0377.4	0067.3	0695.0	007.4	004.2
0016.0	0402.4	0025.0	0690.0	020.0	011.3
0017.0	0429.7	0027.3	0685.0	018.3	010.4
0018.0	0465.2	0035.5	0680.0	014.1	0.800
0019.0	0510.6	0045.4	0675.0	011.0	006.3
0020.0	0554.1	0043.5	0670.0	011.5	006.6
0021.0	0656.4	0102.2	0665.0	004.9	002.8

CARTA GEOLOGICA CARG

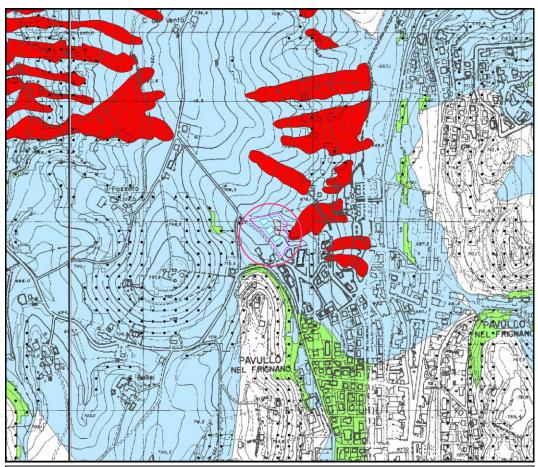
Scala 1:10'000 TAV. 4


DESCRIZIONE DELLE UNITA' GEOLOGICHE PRESENTI IN CARTA

Depositi quaternari continentali	Successione	e epiligure
a1 - Deposito di frana attiva di tipo indeterminato	CI	IG - Formazione di Cigarello
a1b - Deposito di frana attiva per scivolamento	CI	IG2 - Formazione di Cigarello - membro di Monte Luminasio
a1d - Deposito di frana attiva per colamento lento	CI	IG1 - Formazione di Cigarello - membro di Montalto Nuovo
a1g - Deposito di frana attiva complessa	P/	AT - Formazione di Pantano
1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	P/	AT2 - Formazione di Pantano - membro di Montecuccolo
b1 - Deposito alluvionale in evoluzione	P/	AT1 - Formazione di Pantano - membro di Sassoguidano
b1a - Deposito alluvionale in evoluzione fissato da vegetazione	C.	TG - Formazione di Contignaco
d1 - Deposito eolico	M	VT - Brecce argillose della Val Tiepido-Canossa
f1 - Deposito palustre	Al	NT - Marne di Antognola
i1 - Conoide torrentizia in evoluzione		
a3 - Deposito di versante s.l.		
a4 - Deposito eluvio-colluviale		
d1 - Deposito eolico		

CARTA DEL DISSESTO PTCP

Scala 1:10'000 TAV. 5



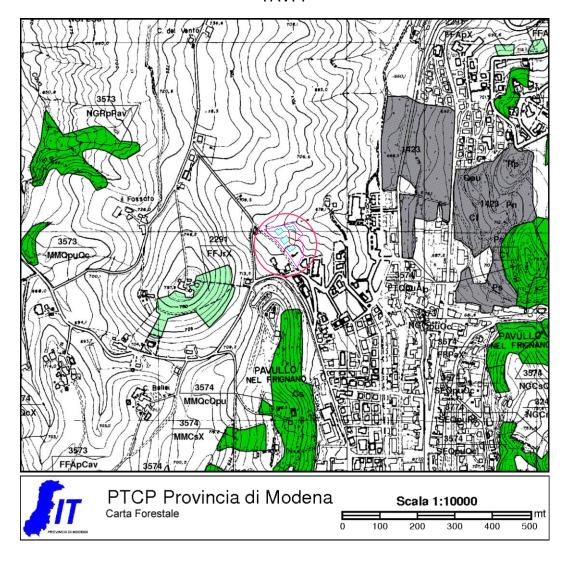
	VOCI DI LEGENDA								
	Zone ed elementi caratterizzati da fenomeni di dissesto e instabilità								
	Aree interessate da frane attive								
			Art.15 Aree interessate da frane quiescenti						
Zone ed elementi caratterizzati da potenziale instabilità									
			Aree potenzialmente instabili	Art.16					
		Aree a	rischio idrogeologico elevato e molto elevato						
	Codice	(pe	Abitati da consolidare o da trasferire erimetrazione approvata ai sensi dell'art.29 comma 2 del PTPR)	Art.17					
	scheda 2.1.1 Aree a rischio idrogeologico molto elevato Art.18A								
	NR		Aree a rischio da frana perimetrate e zonizzate a rischio molto elevato (R4) ed elevato (R3)						

CARTA DEL RISCHIO SISMICO

Scala 1:10'000 TAV. 6

PTCP Provincia di Modena Aree Suscettibili di effetti locali

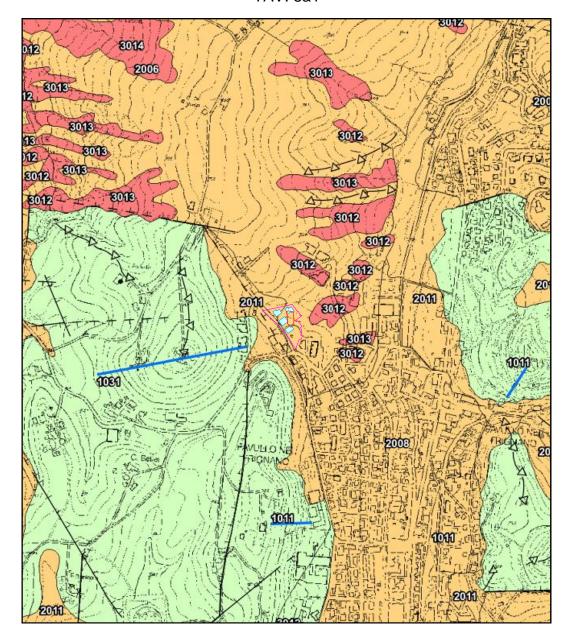
Scala 1:10000 0 100 200 300 400 500


Effetti	attes
Lifetti	attes

	1	Area instabile e soggetta ad amplificazione per caratteristiche litologiche studi*: valutazione del coefficiente di amplificazione litologico e del grado di stabilità del versante in condizioni dinamiche o pseudostatiche (nei casi in cui siano ammessi interventi); microzonazione sismica*: approfondimenti di III livello.
1	2	Area instabile e soggetta ad amplificazione per caratteristiche litologiche e topografiche studi*: valutazione del coefficiente di amplificazione litologico e topografico e del grado di stabilità in condizioni dinamiche o pseudostatiche (nei casi in cui siano ammessi interventi); microzonazione sismica*: approfondimenti di III livello; nelle aree prossime ai bordi superiori di scarpate o a quote immediatamente superiori agli ambliti soggetti ad amplificazione per caratteristiche topografiche e nelle zone con accentuato contrasto di pendenza, lo studio di microzonazione sismica deve valutare anche gli effetti della topografia.
	3	Area potenzialmente instabile e soggetta ad amplificazione per caratteristiche litologiche studi*: valutazione del coefficiente di amplificazione litologico e del grado di stabilità del versante in condizioni dinamiche o pseudostatiche; microzonazione sismica*: approfondimenti di III livello.
	4	Area potenzialmente instabile e soggetta ad amplificazione per caratteristiche litologiche e topografiche studi*: valutazione del coefficiente di amplificazione litologico e topografico e del grado di stabilità del versante in condizioni dinamiche o pseudostatiche; microzonazione sismica*: approfondimenti di III livello; nelle aree prossime ai bordi superiori di scarpate o a quote immediatamente superiori agli ambiti soggetti ad amplificazione per caratteristiche topografiche e nelle zone con accentuato contrasto di pendenza, lo studio di microzonazione sismica deve valutare anche gli effetti della topografia.
	5	Area potenzialmente soggetta ad amplificazione per caratteristiche litologiche studi*: valutazione del coefficiente di amplificazione litologico; microzonazione sismica*: approfondimenti di Il livello.

CARTA FORESTALE PTCP

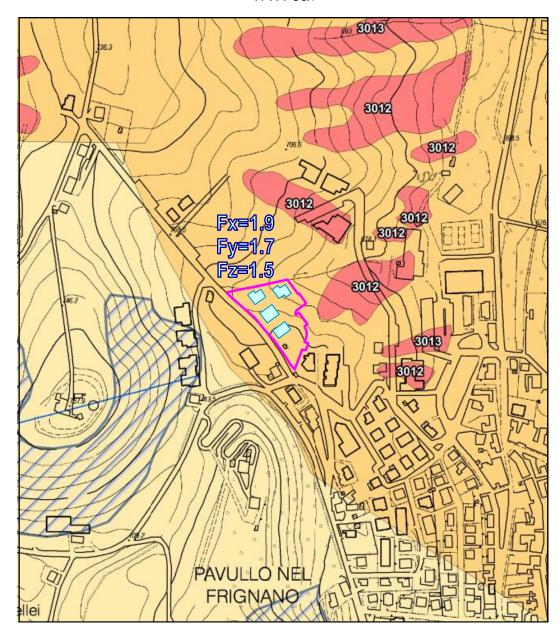
Scala 1:10'000 TAV. 7



CARTA MICROZONAZIONE SISMICA I LIVELLO - PSC

Scala 1:10'000 TAV. 8a1

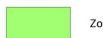
CARTA MICROZONAZIONE SISMICA I LIVELLO - PSC LEGENDA TAV. 8a2


Legenda

Zone stabili	Forme di superficie e sepolte
	Falda detritica
Zone stabili sucettibili di	Conoide alluvionale
amplificazioni locali	■ ■ ■ Orlo di scarpata morfologica >20m
	<u>∆</u> — <u>∆</u> creste
	● Valle sepolta larga
Zone sucettibili di instabilità	Valle sepolta stretta
	△ Picco isolato
	Ω Sinkhole, grotte, cavità isolate
Limite comunale	Traccia per gli approfondimenti delle amplificazioni topografiche

CARTA MICROZONAZIONE SISMICA II LIVELLO PGA/PGAo - PSC

Scala 1:5000 TAV. 9a₁



CARTA MICROZONAZIONE SISMICA II LIVELLO PGA/PGAo - PSC LEGENDA TAV. 9a2

Legenda

Zone stabili

Zone stabili

Zone stabili sucettibili di amplificazioni locali (Fx = PGA/PGAo)

1 < Fx <= 1,5

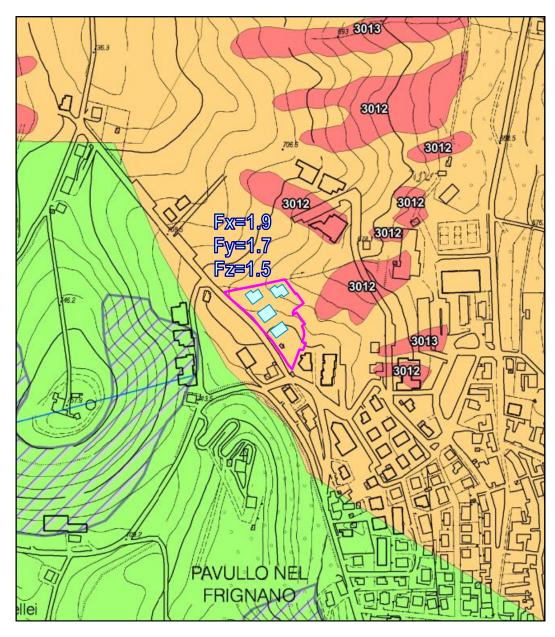
1,5 < Fx <= 2

Fx > 2

Zone sucettibili di instabilità

Instabilità di versante Cedimenti differenziali

Traccia per gli approfondimenti delle amplificazioni topografiche



Area di amplificazione topografica

CARTA MICROZONAZIONE SISMICA II LIVELLO SI/SIo - PSC

Scala 1:5000 TAV. 9b₁

CARTA MICROZONAZIONE SISMICA II LIVELLO SI/SIo - PSC LEGENDA TAV. 9b2

Legenda

Zone stabili

Zone stabili

Zone stabili sucettibili di amplificazioni locali (Fy = SI_(0.1-0.5)/ SI_o)

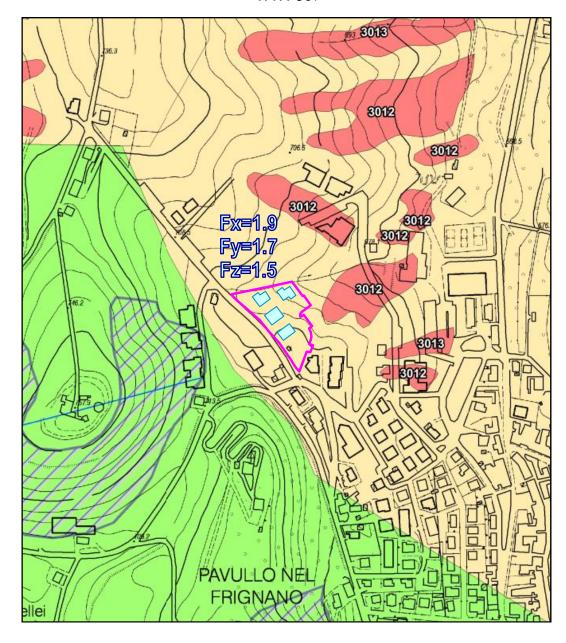
$$1 < Fy <= 1,5$$

Fy > 2

Zone sucettibili di instabilità

Instabilità di versante Cedimenti differenziali

Traccia per gli approfondimenti delle amplificazioni topografiche



Area di amplificazione topografica

CARTA MICROZONAZIONE SISMICA II LIVELLO SI/SIo - PSC

Scala 1:5000 TAV. 9c1

CARTA MICROZONAZIONE SISMICA II LIVELLO SI/SIo - PSC LEGENDA TAV. 9b2

Legenda

Zone stabili

Zone stabili

Zone stabili sucettibili di amplificazioni locali (Fz = SI_(0.5-1.0)/ SI_o)

$$1 < Fz <= 1,5$$

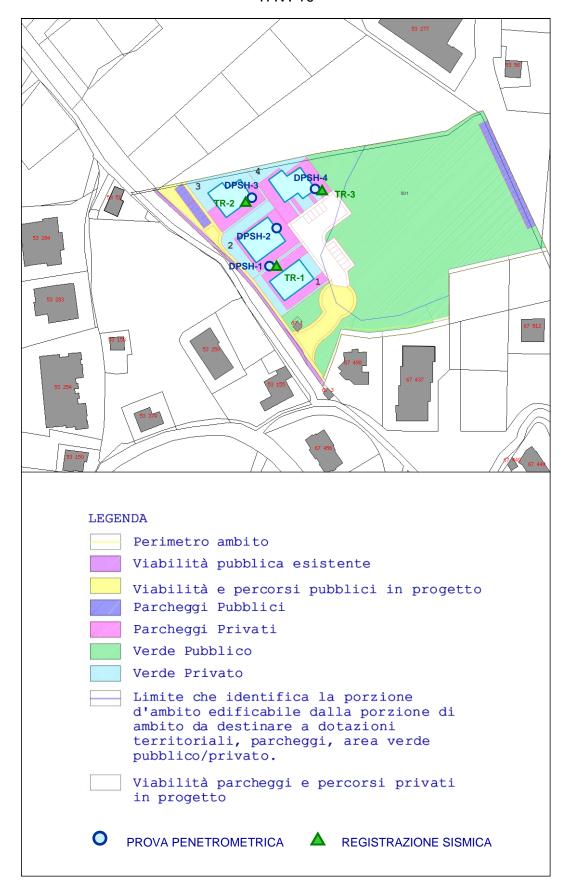
$$1,5 < Fz <= 2$$

Fz > 2

Zone sucettibili di instabilità

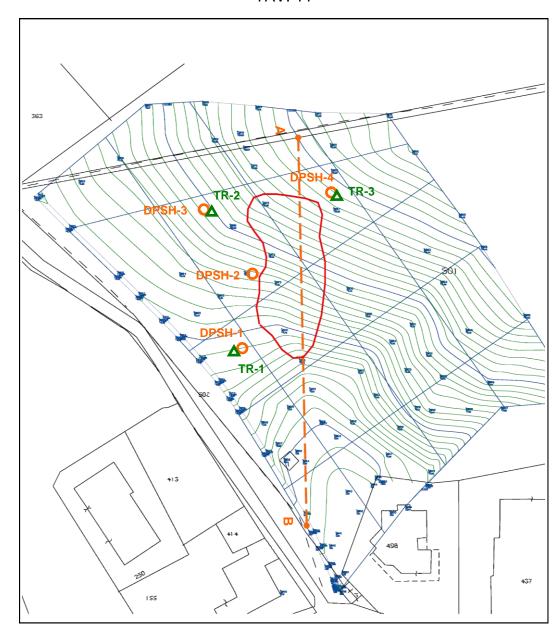
Instabilità di versante Cedimenti differenziali

Traccia per gli approfondimenti delle amplificazioni topografiche



Area di amplificazione topografica

ESTRATTO CATASTALE


Scala 1:2000 TAV. 10

PLANIMETRIA DELL'AREA CON UBICAZIONE PROVE

Scala 1:1000 TAV. 11

LEGENDA

PROVA PENETROMETRICA DINAMICA SUPER PESANTEDPSH

REGISTRAZIONE SISMICA A STAZIONE SINGOLA HVSR

1. RELAZIONE GEOLOGICA

1.1 INQUADRAMENTO GEOMORFOLOGICO

L'area in esame si colloca in località *Verzanella* ad una quota di circa 695/700 m s.l.m. alla periferia Nord-Ovest di *Pavullo nel Frignano* su di un versante costituito dalle *Brecce Argillose della Val Tiepido Canossa* (MVT).

L'area fa parte della porzione più settentrionale di una vasta zolla calcareo - arenaceo - marnosa di dimensioni chilometriche costituita dalle Unità di Bismantova—Antognola e poggiante sui complessi di base costituiti in prevalenza dalle Arenarie di Scabiazza e dalle Argille a Palombini. L'intera conca di Pavullo sarebbe infatti derivata dalla soluzione chimica delle rocce più calcaree, mentre gli abbondanti depositi lacustri deriverebbero da una successiva occlusione delle strutture carsiche che, in un primo tempo, permettevano l'evacuazione delle acque di inondazione.

La parte di versante oggetto di studio è situato al di fuori di questa vasta depressione, su di un versante pelitico-argilloso e quindi non risulta interessata dai fenomeni carsici.

Il versante è ricoperto da uno primo strato di argille allentate costituite da materiale eterogeneo di dimensioni variabili dai massi alle peliti in matrice pelitico argillosa: tuttavia le prove geognostiche svolte nell'area (3 DPSH e 2 HVSR) hanno dimostrato che lo spessore massimo di questi depositi più superficiali, con parametri meccanici molto modesti, è limitato a circa 4 m di spessore.

La morfologia dell'area, soprattutto a valle della dorsale studiata, mostra aree con le tipiche forme dei terreni predisposti al dissesto e quindi gibbosità, fenomeni di soliflusso e pendii irregolari.

Sono presenti frane anche attive sul versante subito a valle della zona interessata all'inserimento del POC per cui sono necessari studi particolari: una microzonazione di sismica di III° livello e calcoli di stabilità del versante che tengano conto delle accelerazioni sismiche più elevate e di particolari opere di difesa.

L'intero versante è solcato da una serie di rivoli e che finiscono di convogliare le loro acque direttamente nel *Torrente Cogorno*.

1.2. INQUADRAMENTO GEOLOGICO

Dal punto di vista geologico poco distante dall'area affiorano i terreni Epiliguri e in particolare le formazioni più arenacee (PAT) e marnose (CIG) della Successione di Bismantova.

Sotto questa denominazione può essere compresa tutta una serie di corpi sedimentari(litosomi) differenziabili a seconda della natura litologica o sedimentologica, oppure in base alla loro posizione stratigrafica. La Successione di Bismantova, diffusa dal Monferrato alla Val Marecchia, affiora molto estesamente nel Modenese e nel Bolognese. Nella Carta Geologica CARG due sono le principali Formazioni affioranti nell' area esaminata: CIG e PAT

Successione epiligure

CIG - Formazione di Cigarello

Marne siltoso-sabbiose, talora argillose, grigie, grigio scure o beiges se alterate, bioturbate e fossilifere. Stratificazione generalmente poco evidente per l'assenza di livelli grossolani e per la bioturbazione. Localmente affiorano intervalli di strati sottili arenaceo-pelitici tabulari con A/P < 1 o litofacies marnose franche. Ambiente di sedimentazione di piattaforma esterna e scarpata-bacino. Il limite inferiore è per alternanza o sfumato con PAT. Lo potenza varia da qualche decina di metri a circa 200 m. *Langhiano - Serravalliano*

CIG2 - Formazione di Cigarello - membro di Monte Luminasio

Arenarie fini e medie, localmente biocalcareniti e litareniti grossolane e microconglomeratiche, alternate a peliti siltose grigie, in strati da sottili a molto spessi, prevalentemente tabulari. Rapporto A/P >1. Intercalazioni metriche e decametriche di peliti sabbiose. Corpi arenacei lenticolari intercalati a varie altezze stratigrafiche. Torbiditi di scarpata bacino. Potenza variabile da 0 a 100 m circa. *Langhiano - Serravalliano*

CIG1 - Formazione di Cigarello - membro di Montalto Nuovo

Alternanze di arenarie finissime bioturbate e siltiti o peliti marnoso-sabbiose in strati da sottilissimi a medi; verso l'alto arenarie bioturbate in strati metrici e peliti marnose. Potenza massima di poche decine di metri. Ambiente di piattaforma esterna. Passaggio sfumato su PAT. *Langhiano - Serravalliano*

PAT - Formazione di Pantano

Areniti siltose fini e finissime, grigie (beige se alterate), alternate a peliti marnose e siltose grigio-chiare; stratificazione generalmente poco marcata o addirittura impercettibile a causa dell'intensa bioturbazione; sono presenti resti di Echinidi, Gasteropodi e Lamellibranchi. Alla base talora affiorano delle areniti glauconitiche. Localmente si intercalano strati arenacei risedimentati medi, mal strutturati, di colore nocciola. Verso l'alto affiorano livelli di marne siltose grigio-azzurre laminate. Il limite inferiore è netto, discordante, su CTG e su ANT. Sedimentazione in ambiente da litorale a piattaforma esterna. La potenza è fino a circa 500 m. Burdigaliano sup. - Langhiano inf.

PAT2 - Formazione di Pantano - membro di Montecuccolo

Biocalcareniti ed areniti ibride giallastre da fini a grossolane, localmente microconglomeratiche, con stratificazione prevalentemente obliqua a grande scala; verso l'alto e verso nord areniti piu' fini e piu' bioturbate. Alla base può essere talora presente una lente di spessore massimo di circa 10m costituita da brecce in prevalebza calcaree (bc1) a stratificazione mal visibile. Contatto inferiore su PAT1, localmente su CTG. Ambiente di piattaforma interna con influssi di marea. Potenza da 0 a 150 m.

PAT1 - Formazione di Pantano - membro di Sassoguidano

Areniti ibride prevalentemente finissime e fini, a luoghi bioturbate, con stratificazione da media a molto spessa, tabulare ed obliqua a piccola scala, a luoghi poco evidente. Verso l'alto areniti piu' grossolane e strutture sedimentarie piu' evidenti. Contatto inferiore discontinuo su CTG. Ambiente di piattaforma interna e di battigia. Potenza variabile da pochissimi metri a 300 m circa.

1.3 IDROLOGIA ED IDROGEOLOGIA

Il versante è solcato da rivoli che indirizzano le loro acque verso la *Via Giardini*, poi le acque finiscono per essere incanalate e indirizzate nel *Torrente Cogorno*.

La permeabilità dei terreni in sito è primaria per porosità nei depositi di versante e nel litotipo pelitico-argilloso che affiora ove è prevista l'area in inserimento; secondaria per fessurazione nella porzione di versante interessato dagli affioramenti arenacei.

Non si posso escludere piccole venute di acqua lungo il contatto fra litotipi a diverso grado di permeabilità.

La porzione di versante a Sud dell'area, al passaggio fra i termini calcarei e quelli marnosi, è spesso ricca di sorgenti.

In generale tutta l'area in corrispondenza degli affioramenti arenaceo-calcarei della *Successione di Bismantova* può essere ritenuta di possibile alimentazione.

1.4 PROCESSI EROSIVI E GRADO DI STABILITA'

I processi erosivi ad opera delle acque superficiali e di ruscellamento sono limitati in prossimità del sito, per l'abbondante copertura vegetale, per le buone caratteristiche meccaniche del litotipo affiorante e soprattutto per la sistemazione del versante a monte conseguente alle opere di urbanizzazione.

Fenomeni erosivi risultano evidenti sulla parte medio bassa del versante in corrispondenza degli affioramenti dell'*Unità di Canossa*: qui si hanno fenomeni di soliflusso generalizzato e deformazioni superficiali di tipo plastico.

Nella "Carta delle Frane e della Stabilità dei terreni del bacino del Fiume Secchia/Panaro" i terreni affioranti nell'area circostante il sito esaminato sono descritti come: "Terreni sufficientemente stabili" in corrispondenza del versante sul quale è ubicato il lotto in oggetto e nel settore a Nord/Ovest di questo; "terreni sufficientemente stabili e/o predisposti al dissesto" nelle aree a Nord-Est del sito, a Ovest della SS 12.

Nella Carta del Dissesto, estratta dal PTCP, nell'area in oggetto

non sono segnalati fenomeni di dissesto o instabilità attivi in corrispondenza dei lotti in inserimento (vedi TAV 5). Tuttavia numerose frane attive vengono segnalate su tutto il versante a valle del sito, la più vicina delle quali viene segnalata ad una distanza di circa 20/30 metri dai previsti fabbricati.

Si segnala inoltre l'esistenza di un recente movimento superficiale ubicato più a monte dei fenomeni franosi già cartografati e sopra decritti; tale movimento, che interesserebbe direttamente gli edifici della lottizzazione, ha comunque dimensioni molto limitate ed una profondità modesta e non sembra in continuità con le frane presenti più a valle, poiché risulta separato da una sorta di dorsale (vedi sovrapposizione tavola 5) a pagina 8. Il movimento ha una lunghezza complessiva di circa 40 m una larghezza di 15 per una profondità massima di circa 3 m.

Per i dettagli sugli spessori del materiale più superficiale a caratteristiche meccaniche modeste, si vedano i minimi di resistenza delle 4 prove penetrometriche eseguite nell'area (allegato A).

1.5 INDAGINI GEOGNOSTICHE E PARAMETRI NOMINALI

E' stato eseguito un sopralluogo per caratterizzare dal punto di vista geologico, geomorfologico, geotecnico e geofisico l'area.

Lo strato pelitico sufficientemente consistente è posto ad una profondità abbastanza limitata nell'area in oggetto.

In particolare nell'area in questione affiora la Formazione della Val Tipepido Canossa: si tratta di blocchi litoidi di svariate dimensioni entro una matrice prevalentemente pelitica ed argillosa.

Per la ricostruzione stratigrafica del sito e per ricavare i principali parametri meccanici sono state eseguite <u>4 prove penetrome-</u> <u>triche dinamiche (DPSH)</u> ubicate come da planimetria di TAV 11.

Per ricavare la frequenza di sito, per calcolare la velocità delle onde S nel terreno, per classificare il sito secondo il DM 14/01/08 (metodo semplificato) ed, infine, per la RSL, sono state effettuate 3 registrazioni sismiche, a stazione singola (TR-1, TR-2 e TR-3), con tromografo Micromed in corrispondenza rispettivamente delle prove penetrometriche dinamiche DPSH-1, DPSH-3, DPSH-4.

1.5.1 Prove Penetrometriche Dinamiche

Per la caratterizzazione geotecnica del terreno in oggetto sono state eseguite 4 prove penetrometriche dinamiche di tipo super pesante (DPSH).

Possiamo utilizzare le relazioni esistenti in letteratura fra il numero dei colpi del penetrometro dinamico e il numero dei colpi dello Standard Penetration Test (Nspt).

Riportiamo l'elaborazione di tutte le prove penetrometriche dinamiche eseguite nell'area.

In queste tabelle vengono forniti i parametri nominali del terreno, mentre per i valori caratteristici, sia per le fondazioni superficiali che profonde, si veda il paragrafo 3.1 e le relative tabelle.

TABELLA STRATI PROVA PENETROMETRICA N DPSH-01 (Parametri Geotecnici e Carico Ammissibile)

	(1 draffeth Geotechief C Garles 7 thirlissibile)										
COMMITTENTE: GAUDENZI					LOCALIT	A' :	PAVULLO				
COMUNE	COMUNE: PAVULLO NEL FRIGNANO					DATA:		28/08/201	5		
NOME FI	LE	GAUDEN	ZI DPSH-0	1		PENETR	OMETRO	DPSH			
Н	N	Nspt	Natu	ıra granu	lare	Nat	ura Coes	siva	FORM	JLA OLAI	NDESI
[m]			ф	Мо	Qa ₁	Cu	Ed	Qa ₂	σ,	Rpd	Qa ₃
[m]			[°]	[kN/m ²]							
1.0	5.6	11.5	28.1	8156	82	77	6892	135	9.5	4128	165
1.4	2.5	5.5	24.0	3906	92	37	3301	71	22.8	1726	69
2.4	5.4	11.1	27.9	7889	212	74	6666	140	36.1	3569	143
6.8	11.6	22.4	33.2	15875	876	150	13415	286	87.4	6524	261
7.2	20.5	37.8	38.0	26860	2370	253	22699	479	133.0	9841	394
7.4	35.0	62.0	42.9	44006	5037	415	37188	758	138.7	16801	672

TABELLA STRATI PROVA PENETROMETRICA N DPSH-02 (Parametri Geotecnici e Carico Ammissibile)

	(1 dramour Goodornor o Garros 7 ariminosiono)										
COMMIT	COMMITTENTE: GAUDENZI					LOCALIT	A' :	PAVULLO)		
COMUNE	:	PAVULLO	NEL FRIC	GNANO		DATA:		28/08/201	5		
NOME FI	NOME FILE GAUDENZI DPSH-02				PENETR	OMETRO	DPSH				
Н	Ν	Nspt	Natu	ıra granu	lare	Nat	ura Coes	siva	FORM	JLA OLA	NDESI
[m]			ф	Мо	Qa ₁	Cu	Ed	Qa ₂	σ_{Λ_i}	Rpd	Qa ₃
[m]			[°]	[kN/m ²]							
2.6	6.0	12.2	28.4	8675	175	82	7331	148	24.7	4137	165
3.0	3.0	6.5	24.9	4618	208	44	3903	92	53.2	1869	75
4.2	5.3	11.0	27.8	7797	368	74	6589	149	68.4	3141	126
10.4	11.5	22.1	33.1	15693	1388	148	13261	300	138.7	5458	218
12.8	19.5	36.1	37.5	25630	3659	242	21659	488	220.4	7682	307
13.0	35.0	62.0	42.9	44006	8495	415	37188	793	245.1	12877	515

H = Profondità del letto dello strato elementare N = Numero dei colpi del penetrometro per singolo avanzamento Nspt = Numero dei colpi della prova SPT (Standard Penetration Test) $\phi^{\circ} = N_{spt} < 30 (15 \cdot Nspt)^{.5} + 15$; $N_{spt} > 30 -0.0015 \cdot N_{spt}^{2} + 0.353 \cdot N_{spt} + 26.782$ (Road Bridge Specification; Carter & Bentley) $Mo = 710 \cdot Nspt$ [Modulo Confinato] [kN/m²] (Farrent) Qa₁= $[(h \cdot \gamma' \cdot Nq) + (\frac{1}{2} b \cdot \gamma \cdot N\gamma)] / 3;$ $[kN/m^2]$ (Qa Terzaghi; Nq, N γ Meyerhof) b=1 m Ed = 600 · Nspt [Modulo Edometrico] [kN/m²] (Stroud & Butler) $Cu = 6.7 \cdot N_{spt}$ [kN/m²] (Terzaghi) $Qa_2 = [(h \cdot \gamma') + (Cu \cdot Nc)] / 3;$ [kN/m²] (Qa Terzaghi; Nc=5.14) Rdp= $M^2 \cdot H / [A \cdot e \cdot (M + P)]$ [kN/m²] (Formula degli Olandesi) [kN/m²] (Carico Ammissibile, Sanglerat) $Qa_3 = (R_{dp}/15 \div 30); Qa = (R_{pd}/25)$

TABELLA STRATI PROVA PENETROMETRICA N DPSH-03 (Parametri Geotecnici e Carico Ammissibile)

COMMIT	TENTE:	GAUDEN	LOCALIT	A' :	PAVULLO						
COMUNE	E:	PAVULLO	NEL FRIC	SNANO		DATA:		10/09/201	5		
NOME FI	LE	GAUDEN	ZI DPSH-0	3		PENETR	OMETRO	DPSH			
Н	N	Nspt	Natu	ıra granu	lare	Nat	ura Coes	siva	FORM	JLA OLAI	NDESI
[m]			ф	Мо	Qa ₁	Cu	Ed	Qa ₂	σ,	Rpd	Qa ₃
[m]			[°]	[kN/m ²]							
1.2	4.5	9.4	26.9	6681	78	63	5646	112	11.4	3279	131
2.4	2.2	4.8	23.5	3431	122	32	2899	67	34.2	1441	58
6.4	6.1	12.3	28.5	8740	497	82	7386	169	83.6	3377	135
6.6	35.0	62.0	42.9	44006	4543	415	37188	753	123.5	17700	708

TABELLA STRATI PROVA PENETROMETRICA N DPSH-04 (Parametri Geotecnici e Carico Ammissibile)

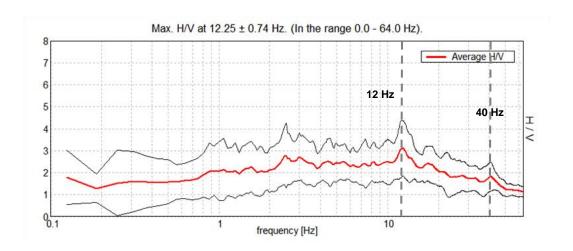
	(1 didition of odition in the control of odition of the control of odition of the control of the										
COMMITT	COMMITTENTE: GAUDENZI					LOCALIT	Ά':	PAVULLO)		
COMUNE	:	PAVULLO	NEL FRIC	GNANO		DATA:		10/09/201	5		
NOME FI	LE	GAUDEN	ZI DPSH-0	4		PENETR	OMETRO	DPSH			
Н	N	Nspt	Natu	ıra granu	lare	Nat	tura Coes	siva	FORM	JLA OLAI	NDESI
Fee 1			ф	Мо	Qa ₁	Cu	Ed	Qa ₂	σv'	Rpd	Qa ₃
[m]			[°]	[kN/m ²]							
1.0	6.2	12.6	28.6	8934	96	84	7550	148	9.5	4553	182
2.2	3.0	6.5	24.8	4600	128	43	3887	85	30.4	2032	81
3.0	4.5	9.4	26.9	6681	245	63	5646	124	49.4	2844	114
3.2	3.0	6.5	24.9	4618	228	44	3903	94	58.9	1807	72
4.6	6.7	13.5	29.1	9601	476	91	8113	180	74.1	3885	155
6.8	9.9	19.4	32.0	13759	922	130	11627	259	108.3	5188	208
7.0	18.0	33.6	36.9	23829	2027	225	20137	429	131.1	8641	346
7.2	35.0	62.0	42.9	44006	4914	415	37188	756	134.9	16801	672

H = Profondità del letto dello strato elementa	are	[m]	
N = Numero dei colpi del penetrometro per s	singolo avanzam	ento	
Nspt = Numero dei colpi della prova SPT (Stan	dard Penetration	Test)	
$\phi^{\circ} = N_{spt} < 30 (15 \cdot Nspt)^{.5} + 15 ; N_{spt} > 30 - 0.0015 \cdot 1$	N _{spt} ² +0.353·N _{spt} +20	6.782	(Road Bridge Specification; Carter & Bentley)
Mo = 710 · Nspt [Modulo Confinato]		$[kN/m^2]$	(Farrent)
$Qa_1 = [(h \cdot \gamma' \cdot N_q) + (\frac{1}{2} b \cdot \gamma \cdot N_{\gamma})] / 3;$	b=1 m	[kN/m ²]	(Qa Terzaghi; Nq, Nγ Meyerhof)
Ed = 600 · Nspt [Modulo Edometrico]		[kN/m ²]	(Stroud & Butler)
$Cu = 6.7 \cdot N_{spt}$		[kN/m ²]	(Terzaghi)
$Qa_2 = [(h \cdot \gamma') + (Cu \cdot Nc)] / 3;$		[kN/m ²]	(Qa Terzaghi; Nc=5.14)
$R_{dp} = M^2 \cdot H / [A \cdot e \cdot (M + P)]$		[kN/m ²]	(Formula degli Olandesi)
Qa ₃ = (Rdp /15÷30); Qa=(Rpd / 25)		[kN/m ²]	(Carico Ammissibile, Sanglerat)

Tutte le prove eseguite mostrano dei minimi meccanici compresi fra -2.5 e -3.0 m dal p.c.: il materiale mostra modeste caratteristiche meccaniche fino a circa 4 m dal p.c.

Al di sotto di questo strato più superficiale si rinviene un substrato compatto (Nspt > 10), costituito molto probabilmente da peliti meno alterate e meno allentate classificabili come consistenti.

L'elaborazione di tutte le prove penetrometriche dinamiche viene riportata nell'allegato A.


1.5.2 Registrazione Sismica

Le prove sismiche hanno confermato la presenza del substrato più compatto ad una profondità di circa 9/10 m e dal p.c. e hanno individuato altri strati di roccia a densità crescente.

Le misure delle Vs₃₀ sono state ottenute dalla frequenza di oscillazione del sito misurata con tromografo Micromed.

La misura si basa sulla registrazione dei microtremori tramite i rapporti spettrali (H/V) fra le componenti orizzontali e verticali del moto (Noghoshi e Igarashi 1970).

Di seguito si riporta il grafico H/V-Hz della <u>registrazione sismica 3, effettuata in prossimità della prova penetrometrica 4:</u>

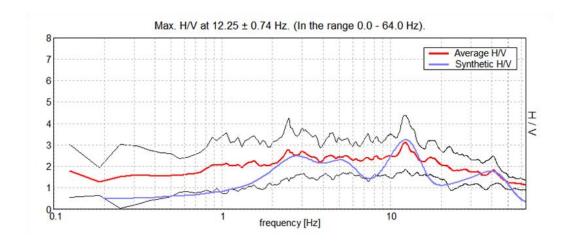
Osservando il grafico precedente si nota un picco importante intorno a 11 Hz, altri picchi si osservano fra 2 e 64 Hz mentre un cambiamento importante di pendenza lo si nota anche a 40 Hz.

Il picco massimo che si colloca a 12 Hz è posto ad una profondità di circa 7 metri e segna li passaggio fra i depositi più superficiali (argille plastiche) e le sottostanti peliti compatte (510 m/s).

Il cambio di acclività posto a circa 40 Hz segna il passaggio fra i depositi superficiali e <u>il terreno agrario.</u>

La frequenza fondamentale di risonanza (Fr) dello strato relativa alle onde S è pari a:

$$Fr = Vs / (4 \cdot h)$$



Dalla formula precedente, conoscendo la frequenza di risonanza e sapendo dalla prova penetrometrica che il passaggio fra lo strato più superficiale e quello sottostante avviene ad una certa profondità h, alla quale corrisponde la frequenza Fr, si può ottenere la Vs media dello strato sovrastante.

Estendendo il ragionamento a tutti gli strati ed eseguendo l'inversione della velocità con ricostruzione teorica del grafico delle frequenze si ottinene la seguente interpretazione stratigrafica:

Bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
0.70	0.70	110	0.40
3.00	2.30	225	0.38
7.00	4.00	310	0.35
29.00	22.00	530	0.35
94.00	65.00	950	0.35
inf.	inf.	1450	0.35

Nel grafico in basso, il confronto fra la curva H/V teorica (blu) e quella sperime ntale (rosso).

1.5.3 Caratterizzazione Geologica Geotecnica e Stratigrafica

Dal punto di vista geologico e geotecnico le conoscenze sull'area in oggetto si possono così riassumere:

- il terreno affiorante risulta costituito da un primo strato di materiale a caratteristiche meccaniche modeste (argille allentate) con spessore variabile fra 3 e 4 m ed Nspt anche minori di 10.
- Un secondo strato, sottostante allo strato precedente, costituito da materiale alterato e fratturato (Nspt > 10 e Vs~310) mostra uno spessore che raggiunge circa 7/10 m.
- Il versante risulta stabile in dorsale in forza della sua bassa acclività, risulta instabile nelle porzioni medio-basse.

"STRATIGRAFIA TIPO" DEL SITO

```
0.0—3/4 m Suolo e argille (Vs~110-225 m/s)

4.0—7.0 m Formazione fratturata e alterata (Vs~310 m/s)

7.0—30 m Formazione più integra (Vs~530 m/s)

>30 m Roccia ? (Vs>950 m/s)
```

Semplificando ancora di più il modello precedente possiamo fornire la seguente stratigrafia di sintesi:

STRATIGRAFIA DPSH-4							
LITOLOGIA	н	Nspt[h]	DESCRIZIONE				
1 2 3 4 5 5 6 6 7 7 8 9 9 10 11 12 13 14 15 16 17 18 19 20 21 12 22 23 24	1.0	4 [2.0] 6 [3.0] 13 [4.5] 19 [6.0]	Terreno vegetale limo argilloso sabbioso con clasti Argille con Spezzoni litoidi (Vs~110-225 m/s) Spezzoni litoidi in matrice pelitica ed argillosa (Vs~310 m/s)				

2. RELAZIONE SISMICA (6.3)

2.1 CLASSIFICAZIONE SISMICA

In base alla classificazione contenuta nell'ordinanza del PCM. n° 3274 del 20 Marzo 2003, il comune di *Pavullo nel Frignano* ricade nella Zona Sismica n° 3 con ag = **0.15** g.

zona	accelerazione orizzontale con probabilità di superamento pari al 10 % in 50 anni	accelerazione orizzontale di ancoraggio dello spettro di risposta elastico (Norme Tecniche)
1	$[a_{\varrho}/g]$ > 0.25	[a _e /g] 0,35
2	0,15-0,25	0,25
3	0,05-015	0,15
4	<0,05	0,05

Nelle recenti Norme Tecniche per le Costruzioni (DM 14/01/2008) l'accelerazione orizzontale massima su sito di riferimento rigido orizzontale, non viene più riferita ai territori comunali ma ad una griglia di riferimento specifica.

Quindi per ottenere i parametri di riferimento bisogna introdurre la latitudine e la longitudine del luogo e il tempo di ritorno.

Ad esempio, per il sito in questione, con un Tr = 475 anni si ottiene una $a_g = 0.159$ g.

Il suolo viene ancora suddiviso in cinque classi principali (A, B, C, D, E) più due categorie aggiuntive S1 e S2 (vedi nota 1).

NOTA 1: Categorie del suolo di fondazione

A - Formazioni litoidi o suoli omogenei molto rigidi caratterizzati da valori di Vs30 superiori a 800 m/s, comprendenti eventuali strati di alterazione superficiale di spessore massimo pari a 5 m.

B - Depositi di sabbie o ghiaie molto addensate o argille molto consistenti, con spessori di diverse decine di metri, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs30 compresi tra 360 m/s e 800 m/s (ovvero resistenza penetrometrica NSPT > 50, o coesione non drenata Cu > 250 kPa).

C - Depositi di sabbie e ghiaie mediamente addensate, o di argille di media consistenza, con spessori variabili da diverse decine fino a centinaia di metri, caratterizzati da valori di Vs30 compresi tra 180 e 360 m/s (15 < NSPT < 50, 70 < Cu < 250 kPa).

D - Depositi di terreni granulari da sciolti a poco addensati oppure coesivi da poco a mediamente consistenti , caratterizzati da valori di Vs30 < 180 m/s (NSPT < 15, Cu < 70 kPa).

E-Profili di terreno costituiti da strati superficiali alluvionali, con valori di Vs30 simili a quelli dei tipi C o D e spessore compreso tra 5 e 20 m, giacenti su di un substrato di materiale più rigido con Vs30 > 800 m/s.

In aggiunta a queste categorie, per le quali nel punto 3.2 vengono definite le azioni sismiche da considerare nella progettazione, se ne definiscono altre due, per le quali sono richiesti studi speciali per la definizione dell'azione sismica da considerare:

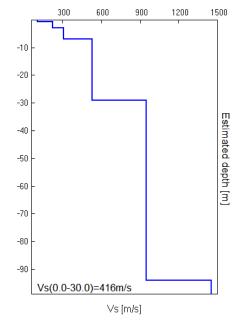
S1 - Depositi costituiti da, o che includono, uno strato spesso almeno 10 m di argille/limi di bassa consistenza, con elevato indice di plasticità (PI > 40) e contenuto di acqua, caratterizzati da valori di Vs30 < 100 m/s (10 < Cu < 20 kPa) S2 - Depositi di terreni soggetti a liquefazione, di argille sensitive, o qualsiasi altra categoria di terreno non classificabile

Nelle definizioni precedenti Vs30 è la velocità media di propagazione entro 30 m di profondità delle onde di taglio.

—La classificazione avviene in base alla velocità delle onde S nel terreno, entro i primi 30 m di profondità dal p.c. Se non si è in possesso della velocità delle onde S la normativa prevede ancora la correlazione fra la velocità delle onde S e il numero dei colpi dello Standard Penetration Test (N_{spt}) oppure fra le Vs e le Cu.

2.1.1 Classificazione del suolo in base alle Vs₃₀

Per il calcolo della Vs_{30} equivalente, rappresentativa dell'intero pacco di strati di 30 m di spessore, si ricorre alla relazione:


$$Vs_{30} = 30 / \Sigma (h_i / Vs_{30i})$$

Le misure delle Vs₃₀ sono state ottenute dalla frequenza di oscillazione del sito misurata con tromografo Micromed.

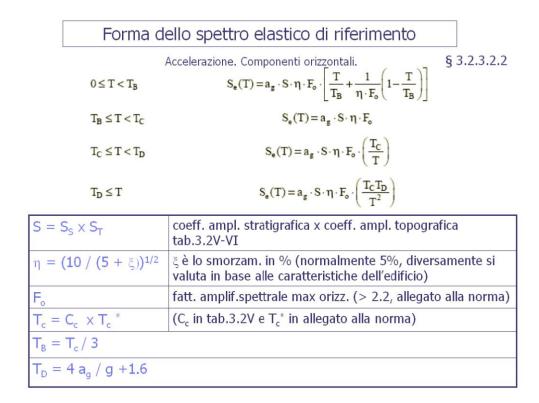
Per i dettagli si rimanda al paragrafo 1.5.2 e agli allegati.

Qui prenderemo in esame la registrazione sismica n°3 eseguita in prossimità della prova penetrometrica dinamica n°4.

Thickness [m]	Vs [m/s]
0.70	110
2.30	225
4.00	310
22.00	530
65.00	950
inf.	1450

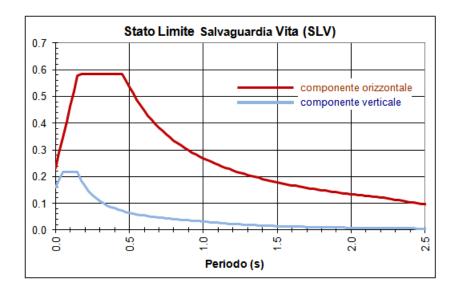
Elaborando le velocità secondo la formula precedente si ottiene per una profondità h = 0 m dal p.c. una

 $Vs_{30} = 416$ m/s (anche le altre 2 registrazioni sono simili).


Quindi sulla base del DM14/01/08, si può concludere che l'area in oggetto ricade nella classe di suolo B. Esaminate però le condizioni stratigrafiche, morfologiche e topografiche dell'area e i risultati delle analisi di III livello si preferisce la classe di suolo C.

2.2 SPETTRO DI RISPOSTA ELASTICO (DM 14/01/2008)

Ai fini del DM 14/09/2005 e successive modifiche e dell'OPCM 3274 va definito lo spettro di risposta elastico, in accelerazione, per il sito in esame. Tale spettro indica, per ciascuna frequenza, la risposta allo scuotimento massimo (da terremoto) di un oscillatore elastico smorzato semplice (che rappresenta un edificio teorico 'tipo') con frequenza propria pari alla frequenza considerata.


Secondo l'ultima versione del DM 14/01/2008 (§ 3.2.3.2.2) tale spettro va calcolato secondo le formule sottostanti che valgono per le componenti orizzontali del moto del suolo.

Con T si intende il periodo fondamentale di risonanza dell'edificio (espresso in secondi) e con ag l'accelerazione massima di picco del sottosuolo (PGA) in caso di terremoto (m/s²).

Dalle correlazioni con le Nspt si ottiene un <u>suolo C</u>; per questo tipo di suolo, con un tempo di ritorno Tr=<u>475 anni</u>, una amplificazione topografica St=1.0 e un coefficiente di smorzamento = 5%, si ottengono le seguenti forme spettrali:

Quindi dalla sintesi dei dati è possibile fornire per il sito in oggetto il seguente quadro:

- 1) La categoria del suolo di fondazione è la C.
- 2) L'accelerazione orizzontale di picco PGA (Peak Ground Acceleration) è di 0.59 con Tr=475 anni (dove g = accelerazione di gravità = 9.81 m/s^2).
- 3) Il coefficiente di amplificazione stratigrafica Sc e il coefficiente Cc sono quelli relativi alla categoria di suolo di fondazione C descritti nella tabella 3.2.5. del DM 14/01/2008.

Categoria sottosuolo	Ss	$\mathbf{c}_{\mathbf{c}}$
A	1,00	1,00
В	$1,00 \le 1,40-0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1{,}10\cdot({\rm T_{\scriptscriptstyle C}^*})^{-0{,}20}$
C	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_{\rm c}^*)^{-0,33}$
D	$0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80 \cdot$	$1,25\cdot (T_{\rm C}^*)^{-0.50}$
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	$1.15 \cdot (T_{\rm C}^*)^{-0.40}$

Per i dettagli si veda l' ALLEGATO B e il DM 14/01/2008.

2.3 MICROZONAZIONE SISMICA II LIV. (DAL RER 112/2007)

Ai fini del DAL RER 112/2007 va definita la microzonazione sismica per l'area in oggetto. Per quest'area è stata eseguita una analisi di secondo livello ed una di terzo livello (§.2.4.)

Si riportano nella tabella seguente i risultati dell'analisi di II livello relativi alla verticale sismica Tr-3:

DATUM ED50	UTM_X = 645919 m	UTM_Y = 491	1688 m	
PROFONDITA'	SPESSORE (m)	Vs (m/s)	BEDROCK	
0.70	0.70	110		Vs30
3.00	2.30	225		V S30
7.00	4.00	310		416 m/s
29.00	22.00	530	X	
30.00	1.00	950		Vsh
94.00	64.00	950		v Sn
				237 m/s
				h = 7 m

Nell'analisi di <u>II livello</u> è sufficiente la conoscenza delle Vs e della profondità del bedrock sismico, per calcolare i fattori di amplificazione sismica rispetto ad un suolo di riferimento (vedi tabelle e formule dell'Allegato A2 della direttiva regionale).

Questi fattori sono espressi sia in termini di rapporto di accelerazione massima orizzontale (PGA/PGAo) sia di rapporto di Intensità di Housner (SI/SIo) per prefissati intervalli di periodi, dove PGAo e SIo sono rispettivamente l'accelerazione massima orizzontale e l'Intensità di Housner al suolo di riferimento, definiti per ogni comune, ricavabili dal data base regionale (disponibile nel sito internet www.regione.emilia-romagna.it/geologia/sismica) e PGA e SI sono le corrispondenti grandezze di accelerazione massima orizzontale e Intensità di Housner calcolate alla superficie dei siti.

Nell'analisi di secondo livello, per valutare gli effetti locali, è sufficiente conoscere il fattore di amplificazione (FA) da associare al sito in esame: esso dipende dalla velocità delle onde S (Vs₃₀ o VsH) e dalla profondità del bedrock (h), applicando i valori dettati dalla direttiva 112/2007, Allegato A2.

TA	D	0	A
F.A.	Ρ.	UI.	Α.

V_{SH}	200	250	300	350	400	450	500	600	700	800
H			111							
5	2.0	1.7	1.5	1.4	1.3	1.2	1.2	1.2	1.1	1.0
10	2.3	2.0	1.8	1.6	1.5	1.4	1.3	1.2	1.1	1.0
15	2.5	2.2	1.9	1.8	1.6	1.5	1.4	1.2	1.1	1.0
20	2.3	2.2	2.1	1.9	1.7	1.6	1.4	1.3	1.1	1.0
25	2.1	2.1	2.1	1.9	1.7	1.6	1.5	1.3	1.1	1.0
30	1.9	2.0	2.0	1.9	1.7	1.6	1.5	1.3	1.1	1.0
35	1.8	1.9	2.0	1.9	1.7	1.6	1.5	1.3	1.1	1.0
40	1.7	1.9	2.0	1.8	1.7	1.6	1.5	1.3	1.1	1.0

F.A. INTENSITA' SPETTRALE - 0.1s < To < 0.5s

1 .7 1. 11 1 1	LITTI	11 01 1	ITTUIL	0.15	10 . 0.					
V_{S_H} H	200	250	300	350	400	450	500	600	700	800
5	1.7	1.5	1.4	1.4	1.4	1.3	1.3	1.2	1.1	1.0
10	2.2	1.9	1.7	1.6	1.5	1.4	1.3	1.2	1.1	1.0
15	2.6	2.2	1.9	1.7	1.6	1.5	1.4	1.2	1.1	1.0
20	2.6	2.5	2.2	1.9	1.7	1.5	1.4	1.2	1.1	1.0
25	2.4	2.6	2.3	2.0	1.8	1.6	1.5	1.3	1.1	1.0
30	2.2	2.4	2.3	2.1	1.9	1.7	1.6	1.3	1.1	1.0
35	2.0	2.2	2.3	2.2	1.9	1.8	1.6	1.4	1.2	1.0
40	1.8	2.0	2.3	2.3	2.1	1.8	1.6	1.4	1.2	1.0

F.A. INTENSITA' SPETTRALE - 0.5s < To < 1.0s

V_{SH}	200	250	300	350	400	450	500	600	700	800
H										re.
5	1.4	1.4	1.4	1.4	1.4	1.3	1.3	1.2	1.1	1.0
10	1.6	1.5	1.4	1.4	1.4	1.3	1.3	1.3	1.1	1.0
15	1.9	1.7	1.5	1.4	1.4	1.4	1.3	1.3	1.2	1.0
20	2.1	1.9	1.7	1.5	1.4	1.4	1.4	1.3	1.2	1.0
25	2.4	2.4	1.9	1.7	1.5	1.4	1.4	1.3	1.3	1.0
30	2.8	2.8	2.4	1.9	1.6	1.5	1.4	1.3	1.3	1.0
35	3.0	2.9	2.7	2.1	1.7	1.6	1.5	1.3	1.3	1.0
40	3.1	3.0	2.8	2.3	1.9	1.7	1.5	1.4	1.4	1.0

LETTURA SISMICA

CASO APP1 (Substrato Vs < 800 m/s)										
Н		=	7	m						
Vsh		=	237	m/s						
FA F	PGA	=	1.9							
FA I	S (0.1 < To < 0.5 s)	=	1.7							
FA I	S (0.5 < To < 1.0 s)	=	1.5							

In queste tabelle (vedi tabelle seguenti), in funzione della velocità di propagazione delle onde S e della profondità h, sono indicati i fattori di amplificazione (FA PGA ed FA SI).

In conclusioni, per il lotto studiato, si sono ottenute le seguenti amplificazioni massime: PGA/PGAo=1.9; $SI/SIo_{(0.1-0.5)}=1.7$; $SI/SIo_{(0.5-1.0)}=1.5$.

2.4. RSL E AMPLIF. SISMICA (III LIVELLO DAL RER 112/07)

E' stata eseguita l'analisi di risposta sismica locale (RSL) per l'area prevista dal presente intervento (analisi di III livello) così come indicato nella DAL RER 112/2007.

Nell'analisi di <u>II livello</u> è sufficiente la conoscenza delle Vs e della profondità del bedrock sismico, per calcolare i fattori di amplificazione sismica rispetto ad un suolo di riferimento (vedi tabelle e formule dell'Allegato A2 della direttiva regionale). Questi fattori sono espressi sia in termini di rapporto di accelerazione massima orizzontale (PGA/PGAo) sia di rapporto di Intensità di Housner(SI/SIo) per prefissati intervalli di periodi, dove PGAo e SIo sono rispettivamente l'accelerazione massima orizzontale e l'Intensità di Housner al suolo di riferimento, definiti per ogni comune, ricavabili dal data base regionale (disponibile nel sito internet www.regione.emilia-romagna.it/geologia/sismica) e PGA e SI sono le corrispondenti grandezze di accelerazione massima orizzontale e Intensità di Housner calcolate alla superficie dei siti.

Nell'analisi di secondo livello, per valutare gli effetti locali, è sufficiente conoscere il fattore di amplificazione (FA) da associare al sito in esame: esso dipende dalla velocità delle onde S (Vs₃₀ o VsH) e dalla profondità del bedrock (h), applicando i valori dettati dalla direttiva 112/2007, Allegato A2. In queste tabelle, in funzione della velocità di propagazione delle onde S e della profondità h, sono indicati i fattori di amplificazione (FA PGA ed FA SI).

Per il calcolo degli effetti locali, nelle indagini di <u>III livello</u>, si sono impiegati come segnali di riferimento i dati contenuti nel database regionale disponibile nel sito internet www.regione.emiliaromagna.it/geologia/sismica. <u>Sulla base di questi dati è stato possibile calcolare, gli accelerogrammi e lo spettri di risposta riferiti ad un **periodo di ritorno di 475 anni** e ad uno smorzamento $\zeta = 5\%$.</u>

La modellazione numerica dei dati ottenuti dalle diverse prove dirette ed indirette, è stata realizzata tramite l'ausilio del software <u>EERA</u>, che è un software di calcolo realizzato per verifiche monodimensionali che, eseguendo una sequenza di analisi lineari complete, è in grado raggiungere valori di rigidezza G e di smorzamento D compatibili con le caratteristiche delle colonne litologiche

oggetto di studio.

La verifica monodimensionale dell'amplificazione locale, si compone di due fasi:

- 1) elaborazione del modello;
- 2) simulazione degli effetti indotti dal sisma di progetto.

<u>La prima fase</u> consiste nell'inserire i dati (accelerazione, intervalli di tempo), relativi ai segnali di riferimento selezionati dalla banca dati accelerometrica "European Strong Motion database" e forniti dal Servizio Geologico, Sismico e dei Suoli regionale.

Si tratta di sismi che possono verificarsi nel territorio del comune oggetto di studio (in questo caso Pavullo nel Frignano).

Questi tre segnali sono "scalati" rispetto al comune a cui si riferiscono, e sono rappresentati da tre differenti accelerogrammi di progetto:

- 1) impulsivo (codice 46);
- 2) con ampio contenuto in frequenze (codice 126);
- 3) con componente predominante alle alte frequenze (codice 354).

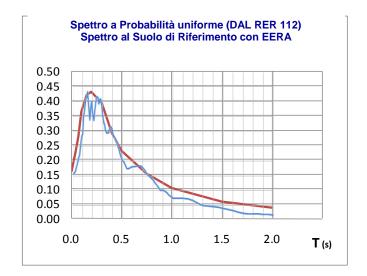
Dopo aver determinato gli input sismici, è necessaria la costruzione del modello del sottosuolo, rappresentato da strati (layer) a differente tessitura e diversi valori delle onde di taglio S (Vs).

La stratigrafia che caratterizza il modello deriva dalla sintesi delle indagini eseguite in sito (<u>3 registrazioni sismiche HVSR e 4</u> prove penetrometriche dinamiche super pesanti DPSH).

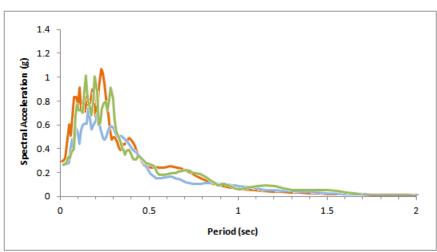
Per quanto riguarda l'attribuzione delle velocità delle onde di taglio(Vs) ai differenti layer costituenti la colonna litologica schematica, vengono utilizzati i risultati derivanti dalla tomografia.

<u>La seconda fase</u> (elaborazione degli effetti indotti dai sisma di progetto), consente di ottenere gli "spettri di risposta".

Sempre nell'allegato C vengono riportati gli spettri di accelerazione (PGA), di velocità (PGV) e di spostamento per ognuno dei tre segnali scaricati dal sito della regione.


Con il programma EERA sono stati ricostruiti sia gli spettri riferiti al modello locale del terreno che gli spettri riferiti al bedrock sismico di riferimento (SUOLO A del DM 01/14/08).

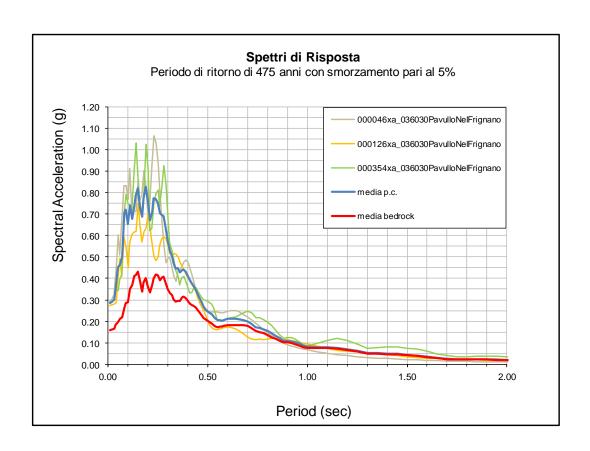
Lo spettro calcolato al suolo di riferimento (somma dei 3 spettri

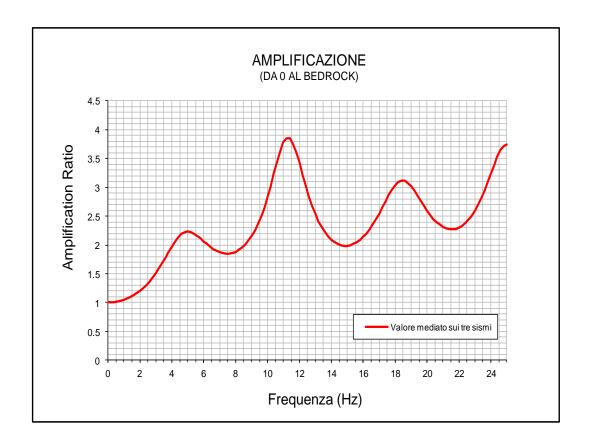

in output ricavati dai segnali 46, 125, 354), è stato quindi confrontato con lo spettro di risposta normalizzato al suolo di riferimento fornito dalla regione nell'allegato A4 del DAL RER 112/2007.

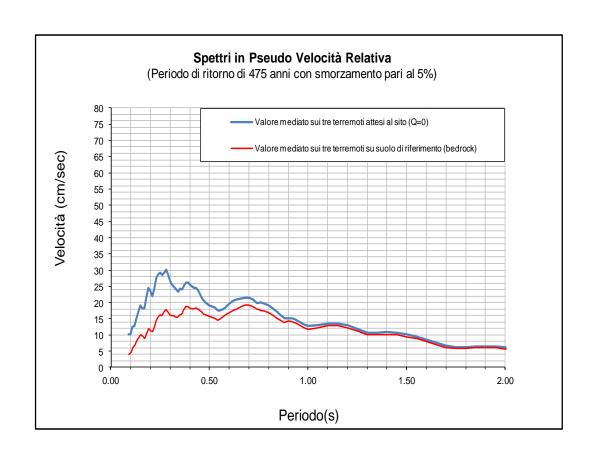
Dal confronto è emerso che lo spettro calcolato con EERA è praticamente sovrapponibile allo spettro di risposta in accelerazione ricavato utilizzando le tabelle dell'Allegato A4 del DAL RER 112/2007 per il comune di Pavullo nel Frignano ($a_{ref} = 0.159$).

Nel grafico riportato sotto la sovrapposizione fra i tre spettri di accelerazione ricavati dai tre segnali di riferimento forniti dal database della regione e riferiti al modello locale.

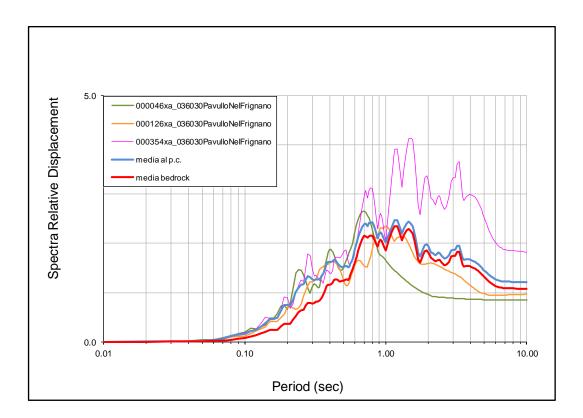
In rosso il segnale impulsivo (46), in blu il segnale con alto contenuto in frequenze (126), in verde, infine, il segnale con componente predominante alle alte frequenze (354).


Spettri in accelerazione (46, 126, 354) per Tr=475 anni


I dati in output (dati in accelerazione, spostamento e velocità e le frequenze di amplificazione) sono stati rielaborati e mediati all'interno di appositi fogli Excel.


Di seguito vengono riportati i seguenti grafici:

- Le forme spettrali in accelerazione ottenute dai 3 input della regione, e la loro media.
- La funzione di amplificazione locale come rapporto tra l'ampiezza dello spettro al suolo e quello in corrispondenza del bedrock per un valore di smorzamento critico pari al 5%
- I grafico dello spettro di pseudo velocità relativa ottenuto sempre dalla media delle tre velocità ottenute dalle 3 elaborazioni separate.
- Il grafico dello spettro di spostamento relativo mediato sempre sui 3 output.
- i coefficienti di amplificazione sismica espressi come rapporto di Intensità di Housner (SI/SIo) negli intervalli di tempo 0.1<T<0.5 s e 0.5<T<1.0 s, ricavati dallo spettro delle pseudo velocità.



Dagli spettri in accelerazione (primo grafico) si ottiene immediatamente il fattore di amplificazione PGA/PGAo e dagli spettri in Pseudo Velocità relativa (terzo grafico) integrando rispetto al tempo (da 0.1 a 0.5 s e da 0.5 a 1.0 s), si ottengono le amplificazione di Housner così come richiesto dalla delibera regionale.

Si noti come il picco dello spettro di accelerazione, somma dei 3 spettri ottenuto da EERA (46+126+354), sia comunque sensibilmente maggiore rispetto allo spettro locale previsto dalle Norme Tecniche (DM 14/01/08, Suolo C, St=1.0, tempo di ritorno $Tr = \frac{475}{100}$ anni). Le amplificazioni fra il II° e il III° livello di approfondimento sono invece paragonabili (soprattutto le prime 2).

3. RELAZIONE GEOTECNICA

3.1 DATI DI PROGETTO

3.1.1 Studi Eseguiti

Il presente lavoro riguarda lo studio sulla stratigrafia e sui parametri caratteristici del terreno in località *Verzanella* (Pavullo), per l'inserimento dell'area in oggetto nel POC comunale.

Sono state utilizzate 4 prove penetrometriche dinamiche per la ricostruzione stratigrafica e per la caratterizzazione geotecnica del terreno di fondazione.

Quindi i parametri nominali, ottenuti dalle prove penetrometriche, sono stati elaborati per ricavare i valori caratteristici.

Per le verifiche di capacità portante allo SL delle future fondazioni e per il calcolo dei cedimenti si rimanda alle future relazioni Geologiche e Geotecniche che verranno sviluppate per ogni singolo fabbricato mentre qui ci limiteremo a fornire i parametri caratteristici del terreno, l'amplificazione sismica II e III livello (vedi paragrafo precedente) ed infine, a verificare la stabilità del sito.

3.1.2 Parametri Caratteristici

I dati riportati nelle tabelle seguenti, sono stati elaborati per grandi superfici (fondazioni su plinti con L > 2m) e per piccole superfici (calcolo della portanza del palo).

In ogni caso, l'elaborazione di tutte le prove è disponibili nell' Allegato A. I dati sono stati rielaborati al 5° percentile di distribuzione della media così da ottenere i valori caratteristici (Xk).

Il valori di progetto (Xd) vengono ricavati da quelli caratteristici secondo il DM 14/01/2008 (vedi tabella 6.2.II).

PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)
	APPLICARE IL	PARZIALE		55 (55)
	COEFFICIENTE PARZIALE	γ_{M}		
Tangente dell'angolo di resistenza al taglio	tan φ' _k	γ _{φ′}	1,0	1,25
Coesione efficace	c' _k	γ _c ′	1,0	1,25
Resistenza non drenata	c_{uk}	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γ	γγ	1,0	1,0

Dai parametri nominali (pag. 25 e 26) si ricavano i parametri caratteristici che vengono mostrati nella tabella sotto riportata nella quale viene elaborata la prova penetrometrica dinamica DPSH-4. Vediamo i dati ottenuti dall'elaborazione per grandi superfici (fondazioni su plinti, travi rovesce, platee, ecc.):

TABELLA STATISTICA 5° PERCENTILE (Cu, φ) - PROVA PENETROMETRICA DPSH-04 (valori caratteristici e di progetto (M2) per fondazioni superficiali)

		(.0	1 - 3	\ / I -			/		
COMMIT	TENTE:	GAUDEN	ZI			LOCALIT	A' :	PAVULLO)		
COMUNE	:	PAVULLO NEL FRIGNANO				DATA:		10/09/201	5		
NOME FI	LE	GAUDEN	ZI DPSH-0)4		PENETR	OMETRO	DPSH			
Н	N	Nspt	Dati	N	latura gra	anulare (ф	<u>)</u>	N	latura Co	esiva (Cu	1)
F1	For a Pol	Face Page	Nicon	фm	dev	φk	фd	Cum	dev	Cuk	Cud
[m]	[media]	[media]	Num	[°]	stand	[°]	[°]	[kN/m ²]	stand	[kN/m ²]	[kN/m ²]
1.0	6.2	12.6	5	28.6	1.9	27.6	22.7	84	23.9	70	50
1.8	3.3	7.0	4	25.1	1.8	24.1	19.7	47	16.4	38	27
2.0	2.0	4.5	1	23.2		21.3	17.3	30		20	14
2.2	3.0	6.5	1	24.9		22.8	18.6	44		28	20
3.0	4.5	9.4	4	26.9	0.7	25.8	21.1	63	7.4	51	37
3.2	3.0	6.5	1	24.9		22.8	18.6	44		28	20
4.6	6.7	13.5	7	29.1	29.1 2.2 27.3		22.5	91	30.5	66	47
6.8	9.9	19.4	11	32.0	1.0	31.4	26.1	130	15.7	121	86
7.0	18.0	33.6	1	36.9		33.9	28.3	225		145	104
7.2	35.0	62.0	1	42.9		39.4	33.3	415		269	192

Num = Numero dei dati presi in considerazione per strato

 ϕ_{m} = Dato medio dell'angolo di attrito interno dello strato

φ_k = Valore caratteristico dell'angolo di attrito (5° percentile di distribuzione della media)

 ϕ_d = Valore di progetto dell'angolo di attrito interno del terreno (M2) [$\gamma \phi = 1.25$]

Cum= Dato medio della coesione non drenata

Cuk = Valore caratteristico della coesione non drenata (5° percentile di distribuzione della media)

 C_{ud} = Valore di progetto della coesione non drenata (M2) [γ_{cu} = 1.4]

Ad esempio, per la verticale DPSH-4 (una delle peggiori per i terreni più superficiali) nei calcoli geotecnici, quando si tratta di grandi superfici (plinti, platee, travi rovesce) si potranno utilizzare i seguenti parametri geotecnici caratteristici del terreno:

STRATO 3 (Depositi prevalentemente limosi ed argillosi 1.8<h<2.0)

 $\phi'_{k} \sim 18/21^{\circ}$

C'_k ~ 2/3 kPa (stimato)

Cu_k ~ 20 kPa

STRATO 6 (Depositi limosi ed argillosi 3.0 <h< 3.2 m)

 $\phi'_{k} \sim 19/22^{\circ}$

 $C'_k \sim 5 \text{ kPa (stimato)}$

Cu_k ~ 30 kPa

Seguono i calcoli dei parametri caratteristici elaborati per piccole superficie e quindi per il calcolo della portanza del palo singolo.

Si prende sempre in considerazione l'elaborazione della prova penetrometrica DPSH-4, quella che ha mostrato caratteristiche geotecniche più modeste nello strato più superficiale:

TABELLA STATISTICA 5° PERCENTILE (Cu, φ) - PROVA PENETROMETRICA DPSH-04 (valori caratteristici e di progetto (M1) per pali)

(valori darattorida di progotto (VIII) poi pail)											
COMMIT	TENTE:	GAUDEN	ZI			LOCALIT	A' :	PAVULLO)		
COMUNE	Ē:	PAVULLO	NEL FRI	GNANO		DATA:		10/09/201	5		
NOME FI	LE	GAUDEN	ZI DPSH-0	4		PENETR	OMETRO	DPSH			
Н	N	Nspt	Dati	N	latura gra	anulare (¢)	N	latura Co	esiva (Cu	1)
for 1	[madia]	for a dial	Nicon	фm	dev	φk	фd	Cum	dev	Cuk	Cud
[m]	[media]	[media]	Num	[°]	stand	[°]	[°]	[kN/m ²]	stand	[kN/m ²]	[kN/m ²]
1.0	6.2	12.6	5	28.6	1.9	25.3	25.3	84	23.9	55	55
1.8	3.3	7.0	4	25.1	1.8	22.2	22.2	47	16.4	30	30
2.0	2.0	4.5	1	23.2		20.5	20.5	30		20	20
2.2	3.0	6.5	1	24.9		22.0	22.0	44		28	28
3.0	4.5	9.4	4	26.9	0.7	23.8	23.8	63	7.4	41	41
3.2	3.0	6.5	1	24.9		22.0	22.0	44		28	28
4.6	6.7	13.5	7	29.1	29.1 2.2 25.5		25.5	91	30.5	50	50
6.8	9.9	19.4	11	32.0	1.0	30.3	30.3	130	15.7	106	106
7.0	18.0	33.6	1	36.9		32.7	32.7	225		145	145
7.2	35.0	62.0	1	42.9		38.0	38.0	415		269	269

Num = Numero dei dati presi in considerazione per strato

 ϕ_m = Dato medio dell'angolo di attrito interno dello strato

 ϕ_k = Valore caratteristico dell'angolo di attrito (5° percentile di distribuzione della media)

 ϕ_d = Valore di progetto dell'angolo di attrito interno del terreno (M1) [$\gamma \phi$ = 1.0]

Cum= Dato medio della coesione non drenata

Cuk = Valore caratteristico della coesione non drenata (5° percentile di distribuzione della media)

 C_{ud} = Valore di progetto della coesione non drenata (M1) [γ_{Cu} = 1.0]

I dati riportati nelle 2 tabelle precedenti sono relativi alla verticale DPSH-4, per l'elaborazione di tutte le altre prove penetrometriche dinamiche (parametri caratteristici per piccole e grandi superfici) si possono esaminare le tabelle dell'allegato A.

In particolare nella terza pagina di ogni prova, la tabella in alto fornisce i parametri caratteristici per grandi superfici e quindi per la capacità portante di fondazioni superficiali, a nastro, a platea o per plinti (L>2 m); la tabella in basso invece fornisce i parametri caratteristici per piccole superfici e cioè per i pali (piccoli plinti).

Per concludere si forniscono, nelle pagine che seguono, le tabelle riassuntive dei parametri geotecnici per ogni verticale di indagine: in alto le tabelle per fondazioni superficiali in basso per i pali.

DPSH-01 (valori caratteristici per fondazioni superficiali)

PARAMETRO GEOTECNICO		STRAT	П				
PARAMETRO GEOTECNICO		1	2	3	4	5	6
Profondità letto dello Strato	[m]	1	1.4	2.4	6.8	7.2	7.4
Spessore dello Strato	[m]	1	0.4	1	4.4	0.4	0.2
Nspt (Standard Penetration Test)	-	11	6	11	22	38	62
Peso Specifico del Terreno	γ [kN/m³]	19	18	19	20	20	21
Densità Relativa	Dr [%]	80	51	68	79	91	100
Coesione non drenata (con \(\phi'=0 \)	Cuk [kN/m²]	65	25	60	140	190	270
Angolo di attrito interno (con C'=0)	φ' _k [°]	27	23	27	33	36	39
Grado di Consolidamento	OCR	1.3	0.2	0.4	>4	>4	>4
Modulo Edometrico	Ed [kN/m²]	6900	3300	6700	13400	22700	37200
Modulo Elastico (Young)	Es [kN/m²]	8900	4800	9000	55400	78600	108500
Modulo di Reazione (Winkler)	Ks [kN/m³]	9800 16200	8500 11000	16700 25400	34300 105100	57400 284400	90900 604500

DPSH-01 (valori caratteristici per pali)

PARAMETRO GEOTECNICO		STRAT	П				
PARAMETRO GEOTECNICO		1	2	3	4	5	6
Profondità letto dello Strato	[m]	1	1.4	2.4	6.8	7.2	7.4
Spessore dello Strato	[m]	1	0.4	1	4.4	0.4	0.2
Nspt (Standard Penetration Test)	-	11	6	11	22	38	62
Peso Specifico del Terreno	γ [kN/m³]	19	18	19	20	20	21
Densità Relativa	Dr [%]	80	51	68	79	91	100
Coesione non drenata (con \(\phi '=0 \)	Cuk [kN/m²]	50	25	50	105	165	270
Angolo di attrito interno (con C'=0)	φ' _k [°]	25	21	25	31	34	38
Grado di Consolidamento	OCR	1.3	0.2	0.4	>4	>4	>4
Modulo Edometrico	Ed [kN/m²]	6900	3300	6700	13400	22700	37200
Modulo Elastico (Young)	Es [kN/m²]	8900	4800	9000	55400	78600	108500
Modulo di Reazione (Winkler)	Ks [kN/m³]	9800 16200	8500 11000	16700 25400	34300 105100	57400 284400	90900 604500

DPSH-02 (valori caratteristici per fondazioni superficiali)

PARAMETRO GEOTECNICO		STRAT	П				
TANAMETRO GEOTECNICO		1	2	3	4	5	6
Profondità letto dello Strato	[m]	2.6	3	4.2	10.4	12.8	13
Spessore dello Strato	[m]	2.6	0.4	1.2	6.2	2.4	0.2
Nspt (Standard Penetration Test)	1	12	7	11	22	36	62
Peso Specifico del Terreno	γ [kN/m³]	19	18	19	20	20	21
Densità Relativa	Dr [%]	75	48	59	68	74	93
Coesione non drenata (con \(\phi'=0 \)	Cuk [kN/m²]	70	30	60	140	220	270
Angolo di attrito interno (con C'=0)	φ' _k [°]	28	23	27	32	37	39
Grado di Consolidamento	OCR	0.5	0.2	0.7	>4	>4	>4
Modulo Edometrico	Ed [kN/m²]	7300	3900	6600	13300	21700	37200
Modulo Elastico (Young)	Es [kN/m²]	9600	5700	9300	63200	96000	123400
Modulo di Reazione (Winkler)	Ks [kN/m³]	17800 21000	11100 24900	17900 44200	36000 166500	58500 439100	95200 1019400

DPSH-02 (valori caratteristici per pali)

PARAMETRO GEOTECNICO		STRAT	П				
PARAMETRO GEOTECNICO		1	2	3	4	5	6
Profondità letto dello Strato	[m]	2.6	3	4.2	10.4	12.8	13
Spessore dello Strato	[m]	2.6	0.4	1.2	6.2	2.4	0.2
Nspt (Standard Penetration Test)	-	12	7	11	22	36	62
Peso Specifico del Terreno	γ [kN/m³]	19	18	19	20	20	21
Densità Relativa	Dr [%]	75	48	59	68	74	93
Coesione non drenata (con ϕ '=0)	Cuk [kN/m²]	55	30	55	100	185	270
Angolo di attrito interno (con C'=0)	φ' _k [°]	26	22	26	30	35	38
Grado di Consolidamento	OCR	0.5	0.2	0.7	>4	>4	>4
Modulo Edometrico	Ed [kN/m²]	7300	3900	6600	13300	21700	37200
Modulo Elastico (Young)	Es [kN/m²]	9600	5700	9300	63200	96000	123400
Modulo di Reazione (Winkler)	Ks [kN/m³]	17800 21000	11100 24900	17900 44200	36000 166500	58500 439100	95200 1019400

DPSH-03 (valori caratteristici per fondazioni superficiali)

PARAMETRO GEOTECNICO		STRAT	П		
PARAMETRO GEOTECNICO		1	2	3	4
Profondità letto dello Strato	[m]	1.2	2.4	6.4	6.6
Spessore dello Strato	[m]	1.2	1.2	4	0.2
Nspt (Standard Penetration Test)	-	9	5	12	62
Peso Specifico del Terreno	γ [kN/m³]	18	18	19	21
Densità Relativa	Dr [%]	71	45	59	100
Coesione non drenata (con \(\phi'=0 \)	Cuk [kN/m²]	55	25	75	270
Angolo di attrito interno (con C'=0)	φ' _k [°]	26	23	28	39
Grado di Consolidamento	OCR	0.8	0.1	>4	>4
Modulo Edometrico	Ed [kN/m²]	5600	2900	7400	37200
Modulo Elastico (Young)	Es [kN/m²]	7500	4300	39000	108500
Modulo di Reazione (Winkler)	Ks [kN/m³]	9400 13400	8000 14600	20300 59600	90300 545200

DPSH-03 (valori caratteristici per pali)

PARAMETRO GEOTECNICO		STRAT	П		
PARAMETRO GEOTECNICO		1	2	3	4
Profondità letto dello Strato	[m]	1.2	2.4	6.4	6.6
Spessore dello Strato	[m]	1.2	1.2	4	0.2
Nspt (Standard Penetration Test)	-	9	5	12	62
Peso Specifico del Terreno	γ [kN/m³]	18	18	19	21
Densità Relativa	Dr [%]	71	45	59	100
Coesione non drenata (con \(\phi'=0 \)	Cuk [kN/m²]	50	25	55	270
Angolo di attrito interno (con C'=0)	φ' _k [°]	26	22	26	38
Grado di Consolidamento	OCR	0.8	0.1	>4	>4
Modulo Edometrico	Ed [kN/m²]	5600	2900	7400	37200
Modulo Elastico (Young)	Es [kN/m²]	7500	4300	39000	108500
Modulo di Reazione (Winkler)	Ks [kN/m³]	9400 13400	8000 14600	20300 59600	90300 545200

DPSH-04 (valori caratteristici per fondazioni superficiali)

PARAMETRO GEOTECNICO		STRAT	гі					
PARAMETRO GEOTECNICO		1	2	3	4	5	6	7
Profondità letto dello Strato	[m]	1	1.8	2	2.2	3	3.2	4.6
Spessore dello Strato	[m]	1	0.8	0.2	0.2	0.8	0.2	1.4
Nspt (Standard Penetration Test)	-	13	7	4	7	9	7	14
Peso Specifico del Terreno	γ [kN/m³]	19	18	17	18	18	18	19
Densità Relativa	Dr [%]	84	56	43	51	59	47	64
Coesione non drenata (con ¢'=0)	Cuk [kN/m²]	70	40	20	30	50	30	65
Angolo di attrito interno (con C'=0)	φ' _k [°]	28	24	21	23	26	23	27
Grado di Consolidamento	OCR	1.5	0.3	0.1	0.2	0.3	0.2	1.4
Modulo Edometrico	Ed [kN/m²]	7500	4200	2700	3900	5600	3900	8100
Modulo Elastico (Young)	Es [kN/m²]	9500	5900	4000	5700	7900	5800	11200
Modulo di Reazione (Winkler)	Ks [kN/m³]	11500 17700	10700 14600	7600 14700	10600 19300	14900 29400	11300 27300	21600 57100

DPSH-04 (valori caratteristici per pali)

DADAMETRO OFOTFOMOS		STRAT	ГІ					
PARAMETRO GEOTECNICO		1	2	3	4	5	6	7
Profondità letto dello Strato	[m]	1	1.8	2	2.2	3	3.2	4.6
Spessore dello Strato	[m]	1	0.8	0.2	0.2	0.8	0.2	1.4
Nspt (Standard Penetration Test)	-	13	7	4	7	9	7	14
Peso Specifico del Terreno	γ [kN/m³]	19	18	17	18	18	18	19
Densità Relativa	Dr [%]	84	56	43	51	59	47	64
Coesione non drenata (con ϕ '=0)	Cuk [kN/m²]	55	30	20	30	40	30	50
Angolo di attrito interno (con C'=0)	φ' _k [°]	25	22	21	22	24	22	25
Grado di Consolidamento	OCR	1.5	0.3	0.1	0.2	0.3	0.2	1.4
Modulo Edometrico	Ed [kN/m²]	7500	4200	2700	3900	5600	3900	8100
Modulo Elastico (Young)	Es [kN/m²]	9500	5900	4000	5700	7900	5800	11200
Modulo di Reazione (Winkler)	Ks [kN/m³]	11500 17700	10700 14600	7600 14700	10600 19300	14900 29400	11300 27300	21600 57100

3.2 CALCOLI DI STABILITA'

3.2.1 Modello Stratigrafico-Geotecnico

Per i calcoli di stabilità si è schematizzato un modello stratigrafico semplificato a 3 strati.

Si è quindi proceduto, con apposito software, a verificare la stabilità del versante lungo la sezione geotecnica riportata nella tavola 11 a pagina 20, nelle condizioni attuali (condizioni statiche), con e senza la presenza della falda.

In sintesi per i terreni indagati per il presente studio si è sintetizzata una stratigrafia geotecnica semplificata che può essere schematizzata come riportato nella pagina seguente:

		BREVE 1	ERMINE	LUNGO TERMINE		
STRATI UTILIZZATI NEI CALCOLI		Cu	Nspt	C'	φ'	
		(kN/m²)	(°)	(kN/m²)	(°)	
0	Argilla da molle a plastica	~ 20	4/6	2	18	
1	Argilla mediamente consistente	~ 90	19/33	10	24	
2	Argilliti, Peliti e Marne compatte	> 200	>100	40	35	

3.2.2 Calcoli di Stabilità

Le verifiche di stabilità sono state condotte secondo quanto previsto nelle Norme Tecniche per le Costruzioni (DM del 14/01/08).

La verifica, che confronta il valore di progetto dell'azione o dell' effetto dell'azione E_d con quello di progetto della resistenza del sistema geotecnico R_d , è stata condotta secondo l'approccio 1.

Il metodo utilizzato nel calcolo di stabilità è quello di Jambu con superficie di rottura circolare.

Viene usata la tecnica della suddivisione a strisce della superficie di scorrimento da analizzare. In particolare il programma esamina un numero di superfici che dipende dalle impostazioni fornite e che sono riportate nella corrispondente sezione.

Il processo iterativo permette di determinare il coefficiente di sicurezza di tutte le superfici analizzate.

I calcoli sono stati eseguiti a breve e a lungo termini in condizioni statiche e dinamiche.

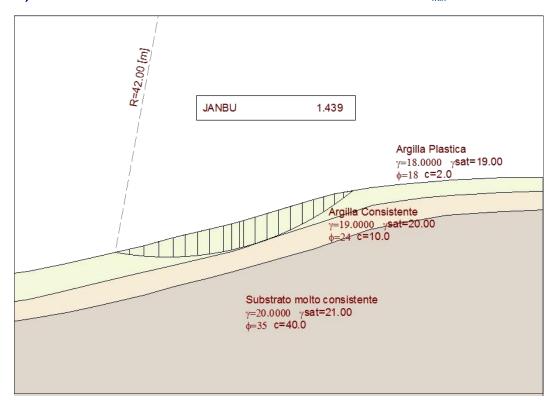
In sintesi, per i calcoli di stabilità, si è così proceduto:

- a) introduzione della geometria del versante: si è eseguita una verifica di stabilità lungo la sezione geotecnica riportata nella tavola 11 della presente relazione; si è proceduto nel calcolo di stabilità sia nella condizione attuale che in quella di terreno saturo.
- b) input dei parametri meccanici per i 3 principali strati individuati per il modello di stabilità:

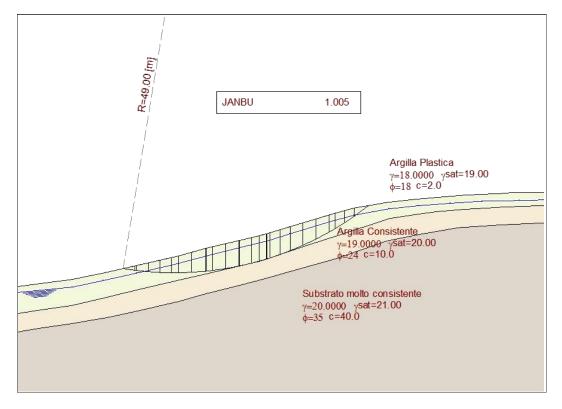
```
STRATO 1: \phi'_{k}=18^{\circ}; C'_{k}=5 kPa

STRATO 2: \phi'_{k}=24^{\circ}; C'_{k}=10 kPa

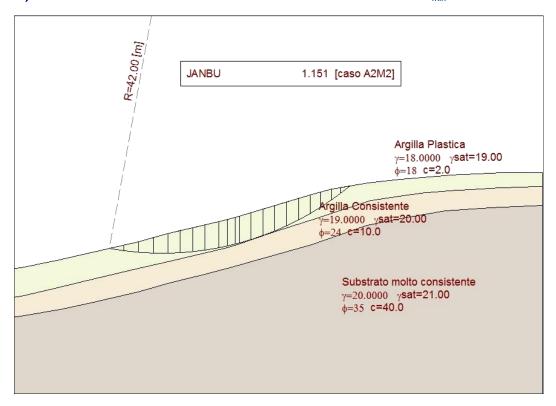
STRATO 3: \phi'_{k}=35^{\circ}; C'_{k}=40 kPa
```


- c) metodo di Jambu con superficie circolare.
- d) normativa NTC 2008 Approccio 1 (DM 14-01-2008)
- e) introduzione dei seguenti coefficiente sismici:
- Tipo di suolo C
 Tr = 475 anni
 Ag = 1.59 m/s²
 Fo = 2.49
 Tc* = 0.29
 Amp.Top. = 1.0
- f) esecuzione del programma di stabilità.

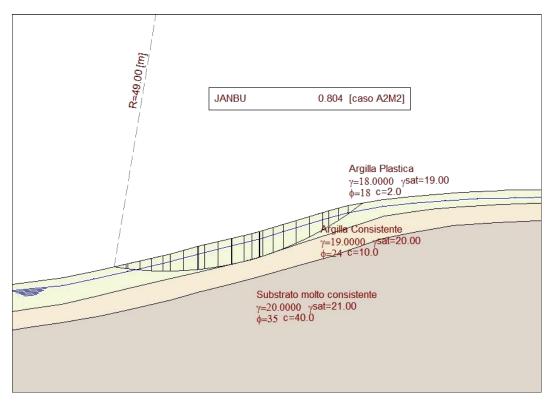
Le verifiche hanno mostrato che, anche nello stato attuale, la stabilità del versante è assicurata solo se il versante rimane drenato.


Di seguito si riportano le sezioni grafiche delle verifiche di stabilità: stato attuale in condizioni statiche con e senza la falda con la vecchia normativa 1996 (calcolo 1 e 2) e con la nuova normativa 2008 (calcoli 3 e 4).

1) DM1996—STATO ATTUALE - VERIFICA STATICA NO FALDA - $F_{min} = 1.44$



2) DM1996—STATO ATTUALE - VERIFICA STATICA CON FALDA - F_{min} = 1.00



3) DM2008—STATO ATTUALE - VERIFICA STATICA NO FALDA - $F_{min} = 1.15$

4) DM2008—STATO ATTUALE - VERIFICA STATICA CON FALDA - $F_{min} = 0.80$

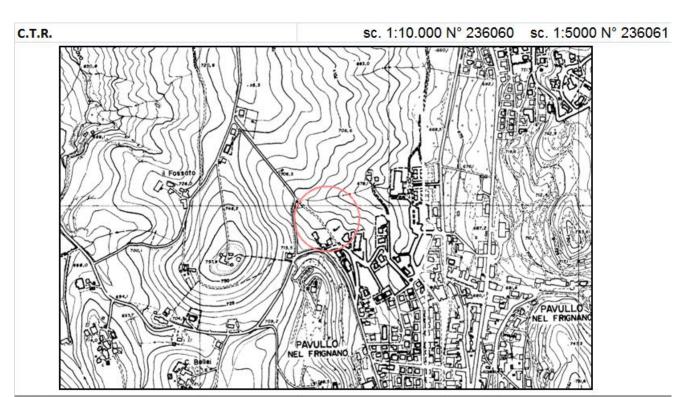
STATO		TIPO VERIFICA	SISMA	H₂O	C '(1)	φ ^{•(1)}	F2 ⁽²⁾
O I A I O		111 G V2.XII 167X	CICILIZA	1120	(kPa)	(°)	Monte
	1	DM 1996	NO	NO	2	19	1.44
ATTILALE	2	DM 1996	NO	SI	2	19	1.00
ATTUALE	3	DM 2008	NO	NO	2	19	1.15
	4	DM 2008	NO	SI	2	19	0.80

NOTA: (1) Parametri relativi allo strato più superficiale. (2) Coefficiente di Stabilità minimo.

3.2.3 Considerazioni sui Calcoli

a) Stato Attuale condizioni statiche

Nello stato attuale, in condizioni statiche e senza la presenza della falda il versante raggiunge una stabilità sufficiente sia con la vecchia normativa (DM 1996, importante tramite back analisi per verificare la bontà dei dati delle prove penetrometriche dinamiche), sia con la nuova normativa (DM 2008) con coefficiente di stabilità rispettivamente di 1.44 e 1.15.


Se si considera invece un terreno saturo (Es: piogge stagionali persistenti), si hanno condizioni di instabilità sia con la normativa, DM 1996 che con quella più recente DM 2008.

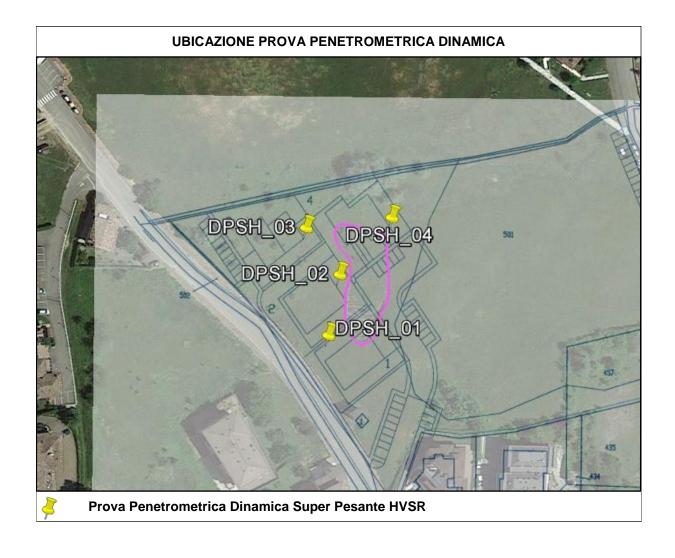
b) Sato condizioni sismiche

In condizioni sismiche e con terreno saturo, il versante non raggiunge mai un adeguato grado di stabilità, per cui si renderanno necessarie opportune opere di sostegno (muri su pali, paratie con pali di medio grande diametro) per assicurare la stabilità dei fabbricati previsti.

4. CONCLUSIONI

INQUADRAMENTO DELL' AREA	Descrizione
Geologia	MVT Brecce Argillose della Val Canossa. Argille grigie che inglobano clasti e blocchi litoidi in prevalenza costituiti da calcilutiti e areniti. Ricopertura 3 - 4 metri di depositi di versante alterati.
Morfologia	Quota compresa fra i 710 - 720 m s.l.m. Esposizione Nord-Est Acclività 14 - 20 %
ldrogeologia - Idrologia	Permeabilità per porosità/ fessurazione della coltre superficiale di spessore 3 - 4 m. Substrato a impermeabilità crescente. Ottimo deflusso delle acque superficiali.
Classificazione PTCP	
Carta del Dissesto PTCP	Area classificata stabile
Carta del Rischio Sismico PTCP	Area classificata pot. soggetta ad amplif. per caratt. Litologiche.
Classificazione PSC	
Carta microz. sismica I Livello (PSC)	Zona stabile suscett. di amplificazioni locali.
Carta microz sismica II Livello Pga/Pga0	Zona stabile suscett. di amplificazioni locali. 1,5 < Fx <=2,0
Carta microz sismica II Livello SI/SI0	Zona stabile suscett. di amplificazioni locali. 1,5 < Fy <=2,0
Carta microz sismica II Livello SI(0.5-1.0) / SIo)	Zona stabile suscett. di amplificazioni locali. 1,0 < Fz <=1,5

CARATTERIZZAZIONE DI DETTAGLIO									
Stratigrafia									
	0.0—3/4 m Suolo e argille (Vs~110-225								
	4.0—7.0 m Formazione fratturata e alterata (Vs~310 m/s) 7.0—30 m Formazione più integra (Vs~530 m/s)								
		30 m/s)							
	>30 m Roccia ? (Vs>950 m/s)								
Vs (0-30)	416 m/s								
Classe del suolo (DM 2008)	Categoria suolo B								
Amplificazioni sismiche (DAL R.E.R. 112/2007)	CASO APP1 (Substrato Vs < 800	m/s)							
	Н	= 7 m							
	Vsh	= 237 m/s							
	FA PGA	= 1.9							
	FA IS (0.1 < To < 0.5 s)	= 1.7							
	FA IS (0.5 < To < 1.0 s)	= 1.5							
Geotecnica - Parametri caratteristici	DPSH-04 (valori caratteristici per fondazioni superficiali)								
	CTDATI								
	PARAMETRO GEOTECNICO 1 2	3 4 5	6 7						
	Profondità letto dello Strato [m] 1 1.8	3 2 2.2 3	3.2 4.6						
	Spessore dello Strato [m] 1 0.8	8 0.2 0.2 0.8	0.2 1.4						
	Nspt (Standard Penetration Test) - 13 7	4 7 9	7 14						
	Peso Specifico del Terreno 7 19 18	3 17 18 18	18 19						
	Densità Relativa Dr 84 56	5 43 51 59	47 64						
	Coesione non drenata (con \$\psi =0) CUk [k\lm] 70 40	20 30 50	30 65						
	Angolo di attrito interno (con C=0) 0 1 28 24	21 23 26	23 27						
	Grado di Consolidamento OCR 1.5 0.3	3 0.1 0.2 0.3	0.2 1.4						
	Modulo Edometrico Fd [kNm] 7500 420	0 2700 3900 5600	3900 8100						
	Modulo Elastico (Young) Es [khm] 9500 590	0 4000 5700 7900	5800 11200						
	Modulo di Reazione (Winkler) Ks 11500 1070 1460		11300 21600 27300 57100						
Tipologia Fondazioni	Fondazioni profonde su pali su tutto il cor	nparto, per ogni tipo	ologia di						
-	struttura prevista.		_						
Prescrizioni ed approfondimenti successivi	Edificabilità condizionata alla realizza	zione dei seguent	ti						
	interventi e verifiche.	- 25							
	 Realizzazione di drenaggi posati a quoti con le strutture di fondazione. 	a -3,5 pai p.c. non ii	nterrerenti						
	-Realizzazione di paratia su pali, a valle s	ul confine nord est	del						
	comparto, per assicurare la stabilità dell'		uei						
	- Indagine mirata per la realizzazione di o		ato e di						
	eventuali opere di sostegno (muri di cont								
	ogni intervento, verifica di stabilità del con								
	- Rilevati e/o riporti di terreno dovranno es								
	trasmettano i carichi al substrato litoide p	resente a partire da	a -4,00 m.						
		ficiali e raccelta							
	dal p.c. attuale Corretta regimazione delle acque superficiali e raccolta								


Pavullo, Settembre 2015

IL GEOLOGO

ALLEGATO A

Prove Penetrometriche Dinamiche DPSH

TABELLA PROVA PENETROMETRICA DINAMICA DPSH-01

COMMIT	TENTE:	GAUDEN	IZI			LOCALI	TA':	PAVULLO	C			
COMUN	E:	PAVULLO	O NEL FR	RIGNANO		DATA:		28/08/20	15			
NOME F	ILE:	GAUDEN	IZI DPSH	-01		PENETI	ROMETR	0	DPSH	FALDA	NO	
			Natu	ra granu	ılare	Nat	ura Coe	siva				
Н	Ν	Nspt	ф	Мо	Qa ₁	Cu	Ed	Qa ₂	σv'	Δ	Rpd	Qa₃
			[°]	[kN/m ²]	Asta	[kN/m ²]	[kN/m ²]					
0.20	6	12.2	28.6	8694	49	82	7347	141	1.9	1	4469	179
0.40	6	12.2	28.6	8694	69	82	7347	142	5.7	1	4469	179
0.60	6	12.2	28.6	8694	88	82	7347	144	9.5	1	4469	179
0.80	6	12.2	28.6	8694	108	82	7347	145	13.3	1	4469	179
1.00	4	8.5	26.3	6003	96	57	5073	103	17.1	2	2762	110
1.20	3	6.5	24.9	4618	94	44	3903	82	20.9	2	2071	83
1.40	2	4.5	23.2	3194	89	30	2699	60	24.7	2	1381	55
1.60	4	8.5	26.3	6003	142	57	5073	107	28.5	2	2762	110
1.80	6	12.2	28.6	8694	207	82	7347	151	32.3	2	4143	166
2.00	6	12.2	28.6	8694	227	82	7347	153	36.1	3	3861	154
2.20	5	10.4	27.5	7359	217	69	6219	132	39.9	3	3217	129
2.40	6	12.2	28.6	8694	267	82	7347	155	43.7	3	3861	154
2.60	17	31.8	36.5	22607	791	213	19105	381	47.5	3	10939	438
2.80	10	19.6	32.1	13882	473	131	11731	242	51.3	3	6434	257
3.00	12	23.1	33.6	16412	608	155	13869	284	55.1	4	7229	289
3.20	10	19.6	32.1	13882	533	131	11731	244	58.9	4	6024	241
3.40	15	28.4	35.6	20148	885	190	17026	347	62.7	4	9036	361
3.60	11	21.3	32.9	15151	652	143	12804	267	66.5	4	6627	265
3.80	9	17.8	31.3	12603	563	119	10651	227	70.3	4	5422	217
4.00	10	19.6	32.1	13882	652	131	11731	249	74.1	5	5663	227
4.20	12	23.1	33.6	16412	822	155	13869	291	77.9	5	6796	272
4.40	11	21.3	32.9	15151	782	143	12804	272	81.7	5	6230	249
4.60	12	23.1	33.6	16412	893	155	13869	294	85.5	5	6796	272
4.80	17	31.8	36.5	22607	1352	213	19105	395	89.3	5	9628	385
5.00	9	17.8	31.3	12603	726	119	10651	235	93.1	6	4809	192
5.20	11	21.3	32.9	15151	913	143	12804	277	96.9	6	5877	235
5.40	16	30.1	36.1	21380	1417	202	18068	379	100.7	6	8549	342
5.60	9	17.8	31.3	12603	807	119	10651	239	104.5	6	4809	192
5.80	10	19.6	32.1	13882	920	131	11731	261	108.3	6	5343	214
6.00	10	19.6	32.1	13882	950	131	11731	262	112.1	7	5057	202
6.20	10	19.6	32.1	13882	980	131	11731	263	115.9	7	5057	202
6.40	10	19.6	32.1	13882	1009	131	11731	264	119.7	7	5057	202
6.60	12	23.1	33.6	16412	1249	155	13869	307	123.5	7	6069	243
6.80	12	23.1	33.6	16412	1285	155	13869	308	127.3	7	6069	243
7.00	20	37.0	37.8	26257	2273	248	22189	468	131.1	8	9601	384
7.20	21	38.7	38.2	27464	2467	259	23209	489	134.9	8	10081	403
7.40	35	62.0	42.9	44006	5037	415	37188	758	138.7	8	16801	672

H = Profondità del letto dello strato elementare N = Numero dei colpi del penetrometro per singolo avanzamento Nspt = Numero dei colpi della prova SPT (Standard Penetration Test) (Road Bridge Specification; Carter & Bentley) $\phi^{\circ} = N_{spt} < 30 (15 \cdot N_{spt})^{.5} + 15 ; N_{spt} > 30 -0.0015 \cdot N_{spt}^{2} + 0.353 \cdot N_{spt} + 26.782$ [kN/m²] (Farrent) Mo = 710 · Nspt [Modulo Confinato] Qa₁= $[(h \cdot \gamma' \cdot Nq) + (\frac{1}{2}b \cdot \gamma \cdot N\gamma)] / 3;$ [kN/m²] (Qa Terzaghi; Nq, Nγ Meyerhof) b=1 m Ed = 600 · Nspt [Modulo Edometrico] [kN/m²] (Stroud & Butler) $Cu = 6.7 \cdot N_{spt}$ [kN/m²] (Terzaghi) Qa₂= $[(h \cdot \gamma') + (Cu \cdot Nc)] / 3;$ [kN/m²] (Qa Terzaghi; Nc=5.14) Rdp= $M^2 \cdot H / [A \cdot e \cdot (M + P)]$ [kN/m²] (Formula degli Olandesi)

[kN/m²] (Carico Ammissibile, Sanglerat)

 $Qa_3 = (R_{dp} / 15 \div 30); Qa = (R_{pd} / 25)$

TABELLA STRATI PROVA PENETROMETRICA N DPSH-01

(Parametri Geotecnici e Carico Ammissibile)

COMMIT	TENTE:	GAUDEN	ZI			LOCALIT	Ά' :	PAVULLO	AVULLO					
COMUNE	COMUNE: PAVULLO NEL FRIGNANO							28/08/201	015					
NOME FI	LE	GAUDEN	ZI DPSH-0	1		PENETR	OMETRO	DPSH						
Н	H N Nspt Natura granulare					Nat	tura Coes	siva	FORM	JLA OLAI	NDESI			
[m]			ф	Мо	Qa ₁	Cu	Ed	Qa ₂	۵,	Rpd	Qa ₃			
[m]			[°]	[kN/m ²]										
1.0	5.6	11.5	28.1	8156	82	77	6892	135	9.5	4128	165			
1.4	2.5	5.5	24.0	3906	92	37	3301	71	22.8	1726	69			
2.4	5.4	11.1	27.9	7889	212	74	6666	140	36.1	3569	143			
6.8	11.6	22.4	33.2	15875	876	150	13415	286	87.4	6524	261			
7.2	20.5	37.8	38.0	26860	2370	253	22699	479	133.0	9841	394			
7.4	35.0	62.0	42.9	44006	5037	415	37188	758	138.7	16801	672			

H = Profondità del letto dello strato elementare

N = Numero dei colpi del penetrometro per singolo avanzamento

Nspt = Numero dei colpi della prova SPT (Standard Penetration Test)

φ°= N_{spt}<30 (15-Nspt).⁵ +15; N_{spt}>30 -0.0015-N_{spt}²+0.353-N_{spt}+26.782 (Road Bridge Specification - Carter & Bentley)

Mo = 710 · Nspt [Modulo Confinato] [kN/m²] (Farrent)

Qa1 = $[(h \cdot \gamma' \cdot Nq) + (\frac{1}{2} \cdot b \cdot \gamma \cdot N\gamma)] / 3$ b=1 m [kN/m²] (Qa Terzaghi; Nq, Nγ Meyerhof)

 $Cu = 6.7 \cdot N_{spt}$

[kN/m²] (Terzaghi) $Ed = 600 \cdot Nspt$ [Modulo Edometrico] [kN/m²] (Stroud & Butler)

Qa2 = $[(h \cdot \gamma') + (Cu \cdot Nc)] / 3$ [kN/m²] (Qa Terzaghi; Nc=5.14)

 $Rpd = M^2 \cdot H / [A \cdot e \cdot (M + P)]$ [kN/m²] (Formula degli Olandesi) $Qa_3 = (R_{dp} / 15 \div 30); \quad Qa = (R_{pd} / 25)$ [kN/m²] (Carico Ammissibile, Sanglerat)

DENSITA' - GRADO OCR - PARAMETRI ELASTICI DPSH-01

(Densità, Sovraconsolidazione, Moduli Elastici)

(Boriotta, Govidooribolitatziorio, Modali Etablio)														
ENTE:	GAUDEN	ZI			LOCALIT	A' :	PAVULLO)						
:	PAVULLO	NEL FRIC	SNANO		DATA:		28/08/201	5						
NOME FILE GAUDENZI DPSH-01					PENETR	OMETRO	DPSH							
N	Nspt				Natu	ıra granu	lare	Nat	tura Coes	iva				
[modia]	ral for fall Hm γ σν		σν	Dr	Ks	Es	OCR	Ks	Ed					
[media]	[media]	[media]	[kN/m³]	[kN/m ²]	[%]	[kN/m ³]	[kN/m ²]	-	[kN/m ³]	[kN/m ²]				
5.6	11.5	0.5	18.6	9.5	79.8	9838	8852	1.3	16203	6892				
2.5	5.5	1.2	17.7	22.8	51.1	10981	4792	0.2	8490	3301				
5.4	11.1	1.9	18.6	36.1	68.0	25450	9024	0.4	16749	6666				
11.6	22.4	4.6	19.6	87.4	79.1	105077	55445	>4	34295	13415				
20.5	37.8	7.0	20.4	133.0	90.7	284364	78577	>4	57434	22699				
35.0	62.0	7.3	21.2	138.7	100.0	604482	108466	>4	90927	37188				
	N [media] 5.6 2.5 5.4 11.6 20.5	PAVULLO E GAUDEN N Nspt [media] [media] 5.6 11.5 2.5 5.5 5.4 11.1 11.6 22.4 20.5 37.8	PAVULLO NEL FRIG GAUDENZI DPSH-0 N	PAVULLO NEL FRIGNANO E GAUDENZI DPSH-01 N Nspt [media] [media] Hm γ [kN/m³] 5.6 11.5 0.5 18.6 2.5 5.5 1.2 17.7 5.4 11.1 1.9 18.6 11.6 22.4 4.6 19.6 20.5 37.8 7.0 20.4	PAVULLO NEL FRIGNANO GAUDENZI DPSH-01 N Nspt [media] [media] Hm γ σν [kN/m²] 5.6 11.5 0.5 18.6 9.5 2.5 5.5 1.2 17.7 22.8 5.4 11.1 1.9 18.6 36.1 11.6 22.4 4.6 19.6 87.4 20.5 37.8 7.0 20.4 133.0	PAVULLO NEL FRIGNANO DATA:	PAVULLO NEL FRIGNANO DATA:	PAVULLO NEL FRIGNANO DATA: 28/08/201	PAVULLO NEL FRIGNANO DATA: 28/08/2015	PAVULLO NEL FRIGNANO DATA: 28/08/2015				

H = Profondità del letto dello strato elementare

N = Numero dei colpi del penetrometro per singolo avanzamento

Nspt = Numero dei colpi della prova SPT (Standard Penetration Test)

Hm = Profondità al centro dello strato

[m] $[kN/m^2]$

 γ = Peso di volume del terreno

[kN/m²]

 σ_v = Pressione litostatica $Dr = 21 \cdot [(10 \cdot Nspt) / (\sigma v + 7)]^{0.5}$

[Densità relativa]

(Gibbs & Holtz)

 $Ks = Qa \cdot 120 - (Qa = carico ammissibile in KPa)$

[Modulo di Reazione - Winkler] [kN/m³]

(Bowles, 1988)

 $E_S = E_S = (105-35\cdot D_r)\cdot N_{spt}$; OCR>4 $E_S = (525-350*D_r)\cdot N_{spt}$

[Modulo Elastico secante] [kN/m²]

(Jamiolkowski, 1988)

 $OCR = (Cu / (\sigma v \cdot KK))^{1.25}$

[Sovraconsolidamento]

(Ladd & Foot)

[-]

 $Ed = 600 \cdot N_{spt}$ (bassa plasticità)

[Modulo Edometrico] [kN/m²] (Stroud & Butler)

TABELLA STATISTICA 5° PERCENTILE (Cu, φ) - PROVA PENETROMETRICA DPSH-01 (valori caratteristici e di progetto (M2) per fondazioni superficiali)

COMMIT	TENTE:	GAUDEN	ZI			LOCALIT	A' :	PAVULLO)		
COMUNE	Ē:	PAVULLO	NEL FRI	SNANO		DATA:		28/08/201	5		
NOME FI	LE	GAUDEN	ZI DPSH-0	1		PENETR	OMETRO	DPSH			
Н	Ν	Nspt	Nspt Dati Natura gran				o)	N	latura Co	esiva (Cu)
Fee 1	For earlied	For earlied	Num	фm	dev	φk	фd	Cum	dev	Cuk	Cud
[m]	[media]	[media]	Num	[°]	stand	[°]	[°]	[kN/m ²]	stand	[kN/m ²]	[kN/m ²]
1.0	5.6	11.5	5	28.1	1.0	27.1	22.2	77	11.4	64	46
1.4	2.5	5.5	2	24.0	1.2	22.6	18.5	37	9.5	27	20
2.4	5.4	11.1	5	27.9	1.0	26.9	22.0	74	11.3	62	44
6.8	11.6	22.4	22	33.2	1.6	32.6	27.1	150	29.3	139	99
7.2	20.5	37.8	2	38.0	0.3	35.8	30.0	253	8.1	189	135
7.4	35.0	62.0	1	42.9		39.4	33.3	415		269	192

Num = Numero dei dati presi in considerazione per strato

 ϕ_m = Dato medio dell'angolo di attrito interno dello strato

φ_k = Valore caratteristico dell'angolo di attrito (5° percentile di distribuzione della media)

 ϕ_d = Valore di progetto dell'angolo di attrito interno del terreno (M2) [$\gamma \phi$ = 1.25]

Cum= Dato medio della coesione non drenata

Cuk = Valore caratteristico della coesione non drenata (5° percentile di distribuzione della media)

 C_{ud} = Valore di progetto della coesione non drenata (M2) [γ_{Cu} = 1.4]

TABELLA STATISTICA 5° PERCENTILE (Cu, φ) - PROVA PENETROMETRICA DPSH-01 (valori caratteristici e di progetto (M1) per pali)

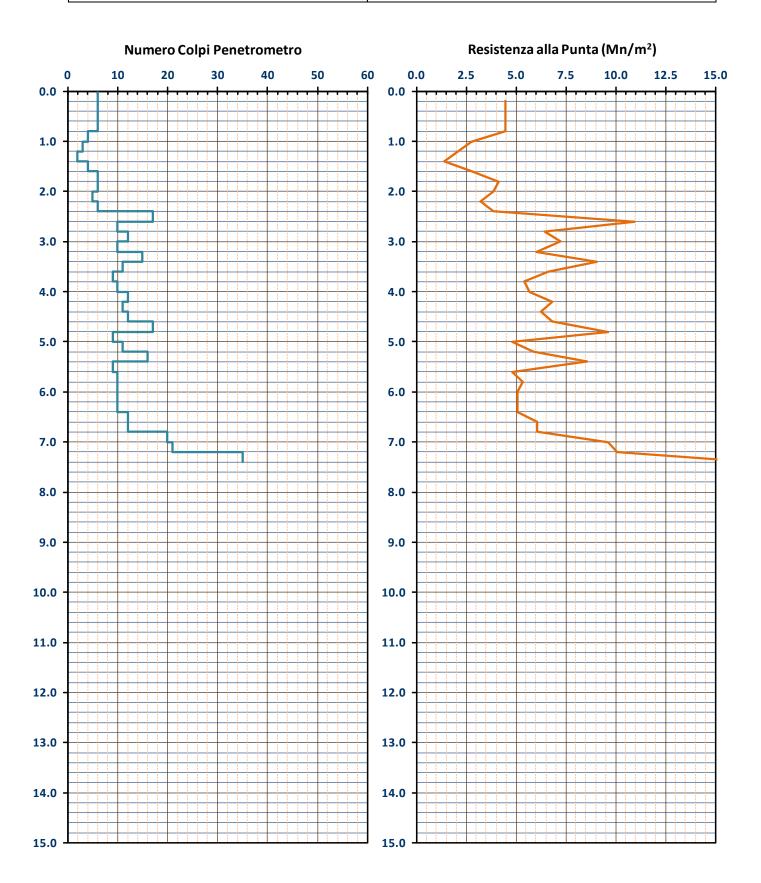
			(valu	ii Carallei	islici e u	progetto	(IVII) pei	pali)				
COMMIT	TENTE:	GAUDEN	ZI			LOCALIT	A' :	PAVULLO)			
COMUNE	:	PAVULLO	NEL FRI	GNANO		DATA:		28/08/2015				
NOME FILE GAUDENZI DPSH-01						PENETROMETRO DPSH						
Н	N	Nspt	Dati	N	latura gra	anulare (¢	o)	N	latura Co	esiva (Cu)	
[mall	[media]	[media] Num om dev				φk	фd	Cum	dev	Cuk	Cud	
[m]	[media]	[media]	INUITI	[°]	stand	[°]	[°]	[kN/m ²]	stand	[kN/m ²]	[kN/m ²]	
1.0	5.6	11.5	5	28.1	1.0	24.9	24.9	77	11.4	50	50	
1.4	2.5	5.5	2	24.0	1.2	21.3	21.3	37	9.5	24	24	
2.4	5.4	11.1	5	27.9	1.0	24.7	24.7	74	11.3	48	48	
6.8	11.6	22.4	22	33.2	1.6	30.5	30.5	150	29.3	107	107	
7.2	20.5	37.8	2	38.0	0.3	33.6	33.6	253	8.1	164	164	
7.4	35.0	62.0	1	42.9		38.0	38.0	415		269	269	

Num = Numero dei dati presi in considerazione per strato

 $\varphi_{\text{\tiny K}} = \, \text{Valore}$ caratteristico dell'angolo di attrito (5° percentile di distribuzione della media)

 ϕ_d = Valore di progetto dell'angolo di attrito interno del terreno (M1) [$\gamma \phi = 1.0$]

Cum= Dato medio della coesione non drenata


 C_{uk} = Valore caratteristico della coesione non drenata (5° percentile di distribuzione della media)

 C_{ud} = Valore di progetto della coesione non drenata (M1) [γ_{Cu} = 1.0]

GRAFICO PROVA PENETROMETRICA DINAMICA DPSH-01

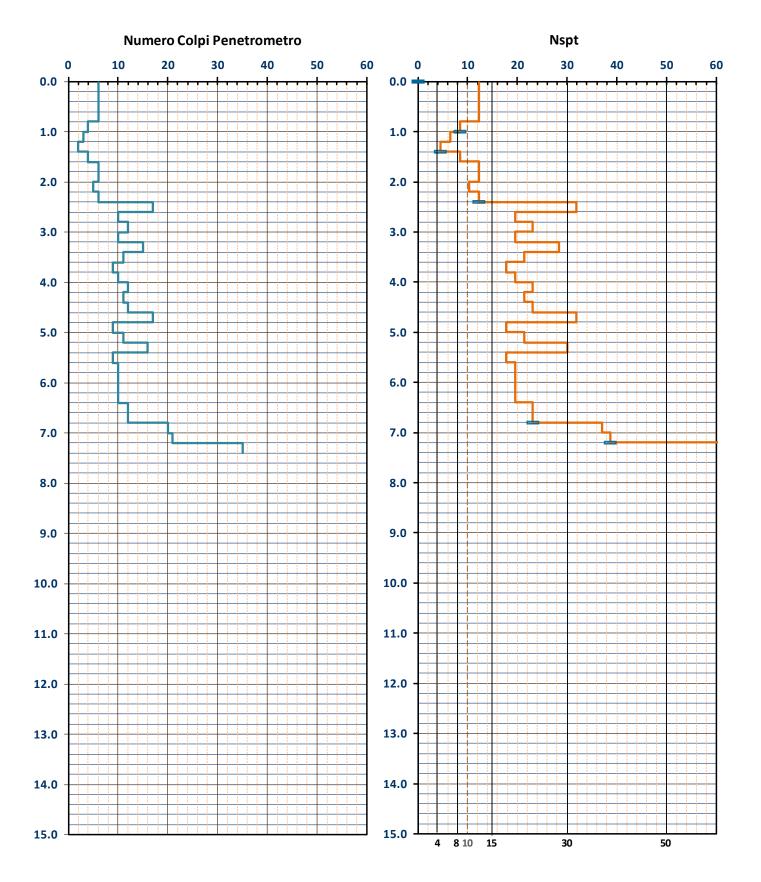

COMMITTENTE:	GAUDENZI	LOCALITA':	PAVULLO
COMUNE:	PAVULLO NEL FRIGNANO	DATA:	28/08/2015
NOME FILE:	GAUDENZI DPSH-01	PENETROMETRO	DPSH

GRAFICO PROVA PENETROMETRICA DINAMICA DPSH-01

COMMITTENTE:	GAUDENZI	LOCALITA':	PAVULLO
COMUNE:	PAVULLO NEL FRIGNANO	DATA:	28/08/2015
NOME FILE:	GAUDENZI DPSH-01	PENETROMETRO	DPSH

TABELLA PROVA PENETROMETRICA DINAMICA DPSH-02

		GAUDEN		RIGNANO		LOCALI DATA:		28/08/20				
NOME FI		GAUDEN					ROMETR		DPSH	FALDA	NO	
VOIVIL 1		GAUDLIN		ra granu	ılare		ura Coes		DI OII	TALDA	110	
Н	N	Nspt	0	Mo	Qa ₁	Cu	Ed	Qa ₂	σν		Rpd	Qa
- 11	14	Nspt		[kN/m ²]	Asta	[kN/m ²]	[kN/m					
0.20	2	6.5	[°]	-						4		
0.20	<u>3</u> 5	6.5 10.4	24.9 27.5	4618 7359	28 59	44 69	3903 6219	75 121	1.9 5.7	1	2235 3724	1
0.60	7	14.1	29.5	10011	101	94	8460	165	9.5	1	5214	2
0.80	7	14.1	29.5	10011	123	94	8460	166	13.3	1	5214	2
1.00	6	12.2	28.6	8694	128	82	7347	146	17.1	2	4143	1
1.20	4	8.5	26.3	6003	111	57	5073	104	20.9	2	2762	1
1.40	5	10.4	27.5	7359	147	69	6219	127	24.7	2	3452	1
1.60	8	15.9	30.5	11314	238	107	9561	192	28.5	2	5524	2
2.00	<u>6</u>	12.2 12.2	28.6 28.6	8694 8694	207 227	82 82	7347 7347	151 153	32.3 36.1	3	4143 3861	1 1
2.20	7	14.1	29.5	10011	278	94	8460	175	39.9	3	4504	1
2.40	8	15.9	30.5	11314	336	107	9561	197	43.7	3	5148	2
2.60	6	12.2	28.6	8694	287	82	7347	156	47.5	3	3861	1
2.80	3	6.5	24.9	4618	201	44	3903	92	51.3	3	1930	
3.00	3	6.5	24.9	4618	214	44	3903	93	55.1	4	1807	
3.20	4	8.5	26.3	6003	266	57	5073	117	58.9	4	2410	
3.40	5	10.4	27.5	7359	323	69	6219	140	62.7	4	3012	1
3.60	5	10.4	27.5	7359	340	69	6219	141	66.5	4	3012	1
3.80	<u>6</u> 5	12.2 10.4	28.6 27.5	8694 7359	405 375	82 69	7347 6219	164 144	70.3 74.1	<u>4</u> 5	3615 2832	1
4.20	7	14.1	29.5	10011	500	94	8460	188	77.9	5	3964	1
4.40	8	15.9	30.5	11314	582	107	9561	210	81.7	5	4531	1
4.60	8	15.9	30.5	11314	606	107	9561	211	85.5	5	4531	1
4.80	8	15.9	30.5	11314	631	107	9561	213	89.3	5	4531	1
5.00	7	14.1	29.5	10011	588	94	8460	193		6	3740	1
5.20	9	17.8	31.3	12603	753	119	10651	236	96.9	6	4809	1
5.40	9	17.8	31.3	12603	780	119	10651	237	100.7	6	4809	1
5.60	10 11	19.6 21.3	32.1 32.9	13882	890 1011	131 143	11731 12804	259 281	104.5 108.3	6 6	5343	2
6.00	10	19.6	32.1	15151 13882	950	131	11731	262	112.1	7	5877 5057	2
6.20	9	17.8	31.3	12603	889	119	10651	242	115.9	7	4551	1
6.40	11	21.3	32.9	15151	1109	143	12804	285	119.7	7	5563	2
6.60	12	23.1	33.6	16412	1249	155	13869	307	123.5	7	6069	2
6.80	11	21.3	32.9	15151	1174	143	12804	287	127.3	7	5563	2
7.00	10	19.6	32.1	13882	1099	131	11731	268	131.1	8	4800	1
7.20	15 11	28.4	35.6	20148	1751	190	17026	371	134.9	8	7200	2
7.40 7.60	12	21.3	32.9 33.6	15151 16412	1272 1427	143 155	12804 13869	291 313	138.7 142.5	<u>8</u> 8	5280 5760	2
7.80	12	23.1	33.6	16412	1463	155	13869	314	146.3	8	5760	2
8.00	17	31.8	36.5	22607	2167	213	19105	416	150.1	9	7766	
8.20	11	21.3	32.9		1402	143		296	153.9	9	5025	2
8.40	11	21.3	32.9	15151	1435	143	12804	298	157.7	9	5025	2
8.60	10	19.6	32.1	13882	1337	131	11731	278		9	4568	1
8.80	11	21.3	32.9	15151	1500	143	12804	300		9	5025	2
9.00	13 19	24.9	34.3	17664	1829	167	14927	342	169.1	10	5665	2
9.20	12	35.3 23.1	37.4 33.6	25045 16412	2774 1748	236 155	21165 13869	463 324	172.9 176.7	10 10	8279 5229	3
9.60	13	24.9	34.3	17664	1945	167	14927	346		10	5665	- 2
9.80	13	24.9	34.3	17664	1984	167	14927	347	184.3	10	5665	2
10.00	13	24.9	34.3	17664	2023	167	14927	348		11	5415	
10.20	17	31.8	36.5	22607	2728	213	19105	429	191.9	11	7081	2
10.40	12	23.1	33.6	16412	1926	155	13869	331	195.7	11	4999	- 2
10.60	17	31.8	36.5	22607	2829	213	19105	432	199.5	11	7081	- 2
10.80	19	35.3	37.4	25045	3230	236	21165 19105	473	203.3	11	7915	- ;
11.00 11.20	17 16	31.8 30.1	36.5 36.1	22607 21380	2931 2813	213 202	19105 18068	435 416	207.1 210.9	12 12	6782 6384	
11.40	17	31.8	36.5	22607	3033	213	19105	437	214.7	12	6782	
11.60	18	33.6	36.9	23829	3267	225	20137	458	218.5	12	7181	- 2
11.80	18	33.6	36.9	23829	3321	225	20137	459	222.3	12	7181	- 2
12.00	21	38.7	38.2	27464	3992	259	23209	519	226.1	13	8039	3
12.20	20	37.0	37.8	26257	3838	248	22189	501	229.9	13	7656	(')
12.40	20	37.0	37.8	26257	3899	248	22189	502	233.7	13	7656	(')
12.60	23	42.1 50.4	39.0	29867	4658	282	25239	562	237.5	13	8805	(3)
12.80	28		40.8	35810	6096	338	30262	659	241.3	13	10719	4

TABELLA STRATI PROVA PENETROMETRICA N DPSH-02

(Parametri Geotecnici e Carico Ammissibile)

COMMIT	TENTE:	GAUDEN	ZI			LOCALIT	A' :	PAVULLO)		
COMUNE	:	PAVULLO	NEL FRIC	SNANO		DATA:		28/08/201	5		
NOME FI	LE	GAUDEN	ZI DPSH-0	2		PENETR	OMETRO	DPSH			
Н	Ν	Nspt Natura granulare				Nat	ura Coes	siva	FORM	JLA OLA	NDESI
[m]			ф	Мо	Qa ₁	Cu	Ed	Qa ₂	σv'	Rpd	Qa ₃
[m]			[°]	[kN/m ²]							
2.6	6.0	12.2	28.4	8675	175	82	7331	148	24.7	4137	165
3.0	3.0	6.5	24.9	4618	208	44	3903	92	53.2	1869	75
4.2	5.3	11.0	27.8	7797	368	74	6589	149	68.4	3141	126
10.4	11.5	22.1	33.1	15693	1388	148	13261	300	138.7	5458	218
12.8	19.5	36.1	37.5	25630	3659	242	21659	488	220.4	7682	307
13.0	35.0	62.0	42.9	44006	8495	415	37188	793	245.1	12877	515

H = Profondità del letto dello strato elementare

N = Numero dei colpi del penetrometro per singolo avanzamento

Nspt = Numero dei colpi della prova SPT (Standard Penetration Test)

φ°= N_{spt}<30 (15-Nspt).⁵ +15; N_{spt}>30 -0.0015-N_{spt}²+0.353-N_{spt}+26.782 (Road Bridge Specification - Carter & Bentley)

Mo = 710 · Nspt [Modulo Confinato] [kN/m²] (Farrent)

Qa1 = $[(h \cdot \gamma' \cdot Nq) + (\frac{1}{2} \cdot b \cdot \gamma \cdot N\gamma)] / 3$ b=1 m [kN/m²] (Qa Terzaghi; Nq, Nγ Meyerhof)

 $Cu = 6.7 \cdot N_{spt}$

[kN/m²] (Terzaghi) Ed = 600 · Nspt [Modulo Edometrico] [kN/m²] (Stroud & Butler)

 $Qa2 = [(h \cdot \gamma') + (Cu \cdot Nc)] / 3$ [kN/m²] (Qa Terzaghi; Nc=5.14)

 $Rpd = M^2 \cdot H / [A \cdot e \cdot (M + P)]$ [kN/m²] (Formula degli Olandesi)

 $Qa_3 = (R_{dp} / 15 \div 30); \quad Qa = (R_{pd} / 25)$ [kN/m²] (Carico Ammissibile, Sanglerat)

DENSITA' - GRADO OCR - PARAMETRI ELASTICI DPSH-02

(Densità, Sovraconsolidazione, Moduli Elastici)

	(Donotta, Goviaconcondazione, Modali Elaction)										
COMMIT	TENTE:	GAUDEN	ZI			LOCALITA': PAVULLO					
COMUNE	:	PAVULLO	NEL FRI	SNANO		DATA: 28/08/2015					
NOME FI	LE	GAUDEN	ZI DPSH-0	2		PENETROMETRO DPSH					
Н	N	Nspt			Natu	ıra granu	lare	Nat	tura Coes	siva	
[m]	[modia]	[media]	Hm	γ	σν	Dr	Ks	Es	OCR	Ks	Ed
[m]	[media]	[media]	[media]	[kN/m³]	[kN/m ²]	[%]	[kN/m ³]	[kN/m ²]	-	[kN/m ³]	[kN/m ²]
2.6	6.0	12.2	1.3	18.7	24.7	75.4	20955	9603	0.5	17819	7331
3.0	3.0	6.5	2.8	17.9	53.2	48.3	24911	5731	0.2	11088	3903
4.2	5.3	11.0	3.6	18.6	68.4	59.2	44178	9258	0.7	17864	6589
10.4	11.5	22.1	7.3	19.6	138.7	68.3	166533	63170	>4	35994	13261
12.8	19.5	36.1	11.6	20.3	220.4	74.0	439091	95971	>4	58542	21659
13.0	35.0	62.0	12.9	21.2	245.1	93.1	1019365	123354	>4	95183	37188

H = Profondità del letto dello strato elementare

N = Numero dei colpi del penetrometro per singolo avanzamento

Nspt = Numero dei colpi della prova SPT (Standard Penetration Test)

Hm = Profondità al centro dello strato

[m] $[kN/m^2]$

 γ = Peso di volume del terreno

 σ_v = Pressione litostatica

[kN/m²]

 $Dr = 21 \cdot [(10 \cdot Nspt) / (\sigma v + 7)]^{0.5}$

[Densità relativa]

(Gibbs & Holtz) (Bowles, 1988)

 $Ks = Qa \cdot 120 - (Qa = carico ammissibile in KPa)$

[Modulo di Reazione - Winkler] [kN/m³] [Modulo Elastico secante] [kN/m²]

(Jamiolkowski, 1988)

 $E_S = E_S = (105-35\cdot D_r)\cdot N_{spt}$; OCR>4 $E_S = (525-350*D_r)\cdot N_{spt}$

[Sovraconsolidamento]

 $OCR = (Cu / (\sigma v \cdot KK))^{1.25}$

[-] (Ladd & Foot)

Ed = 600 · Nspt (bassa plasticità)

[Modulo Edometrico] [kN/m²] (Stroud & Butler)

TABELLA STATISTICA 5° PERCENTILE (Cu, φ) - PROVA PENETROMETRICA DPSH-02 (valori caratteristici e di progetto (M2) per fondazioni superficiali)

COMMIT	TENTE:	GAUDEN	ZI			LOCALIT	A' :	PAVULLO				
COMUNE	:	PAVULLO	NEL FRI	GNANO		DATA: 28/08/2015						
NOME FI	LE	GAUDENZI DPSH-02					PENETROMETRO DPSH					
Н	Ν	Nspt Dati Natura grai			anulare (φ) Natura Coesiva (Cu)				1)			
Fee 1	for a slight	For earlied	Num	фm	dev	φk	фd	Cum	dev	Cuk	Cud	
[m]	[media]	[media]	Num	[°]	stand	[°]	[°]	[kN/m ²]	stand	[kN/m ²]	[kN/m ²]	
2.6	6.0	12.2	13	28.4	1.6	27.6	22.7	82	18.5	72	52	
3.0	3.0	6.5	2	24.9	0.0	23.4	19.1	44	0.0	32	23	
4.2	5.3	11.0	6	27.8	1.1	26.8	22.0	74	13.0	62	44	
10.4	11.5	22.1	31	33.1	1.8	32.5	27.0	148	32.4	138	99	
12.8	19.5	36.1	12	37.5	1.3	36.8	30.9	242	38.0	221	158	
13.0	35.0	62.0	1	42.9		39.4	33.3	415		269	192	

Num = Numero dei dati presi in considerazione per strato

 ϕ_m = Dato medio dell'angolo di attrito interno dello strato

φ_k = Valore caratteristico dell'angolo di attrito (5° percentile di distribuzione della media)

 ϕ_d = Valore di progetto dell'angolo di attrito interno del terreno (M2) [$\gamma \phi$ = 1.25]

Cum= Dato medio della coesione non drenata

Cuk = Valore caratteristico della coesione non drenata (5° percentile di distribuzione della media)

 C_{ud} = Valore di progetto della coesione non drenata (M2) [γ_{Cu} = 1.4]

TABELLA STATISTICA 5° PERCENTILE (Cu, φ) - PROVA PENETROMETRICA DPSH-02 (valori caratteristici e di progetto (M1) per pali)

			(vaio	ii Carallei	islici e u	progetto	(IVII) pei	paii)			
COMMIT	TENTE:	GAUDEN	Z			LOCALIT	A' :	PAVULLO			
COMUNE	Ē:	PAVULLO	NEL FRI	GNANO		DATA: 28/08/2015					
NOME FILE GAUDENZI DPSH-02						PENETROMETRO DPSH					
Н	N	Nspt Dati Natura gra			anulare (\$\phi\$) Natura Coesiva (Cu)				1)		
Free 1	[modia]	[media]	Num	фm	dev	φk	фd	Cum	dev	Cuk	Cud
[m]	n] [media] [n	[media]	Num	[°]	stand	[°]	[°]	[kN/m ²]	stand	[kN/m ²]	[kN/m ²]
2.6	6.0	12.2	13	28.4	1.6	25.8	25.8	82	18.5	55	55
3.0	3.0	6.5	2	24.9	0.0	22.0	22.0	44	0.0	28	28
4.2	5.3	11.0	6	27.8	1.1	25.9	25.9	74	13.0	54	54
10.4	11.5	22.1	31	33.1	1.8	30.0	30.0	148	32.4	101	101
12.8	19.5	36.1	12	37.5	1.3	35.4	35.4	242	38.0	185	185
13.0	35.0	62.0	1	42.9		38.0	38.0	415		269	269

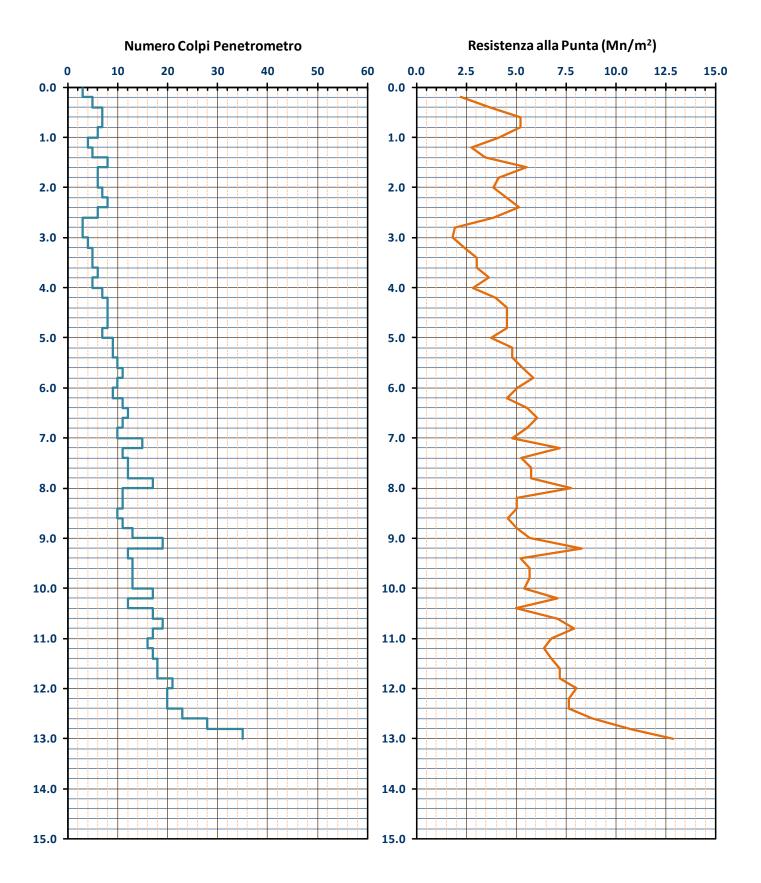
Num = Numero dei dati presi in considerazione per strato

 $\varphi_{\text{\tiny K}} = \, \text{Valore}$ caratteristico dell'angolo di attrito (5° percentile di distribuzione della media)

 ϕ_d = Valore di progetto dell'angolo di attrito interno del terreno (M1) [$\gamma \phi = 1.0$]

Cum= Dato medio della coesione non drenata

 $C_{\text{uk}} = \text{Valore caratteristico della coesione non drenata } (5^{\circ} \text{ percentile di distribuzione della media})$


 C_{ud} = Valore di progetto della coesione non drenata (M1) [γ_{cu} = 1.0]

DPSH-02

GRAFICO PROVA PENETROMETRICA DINAMICA

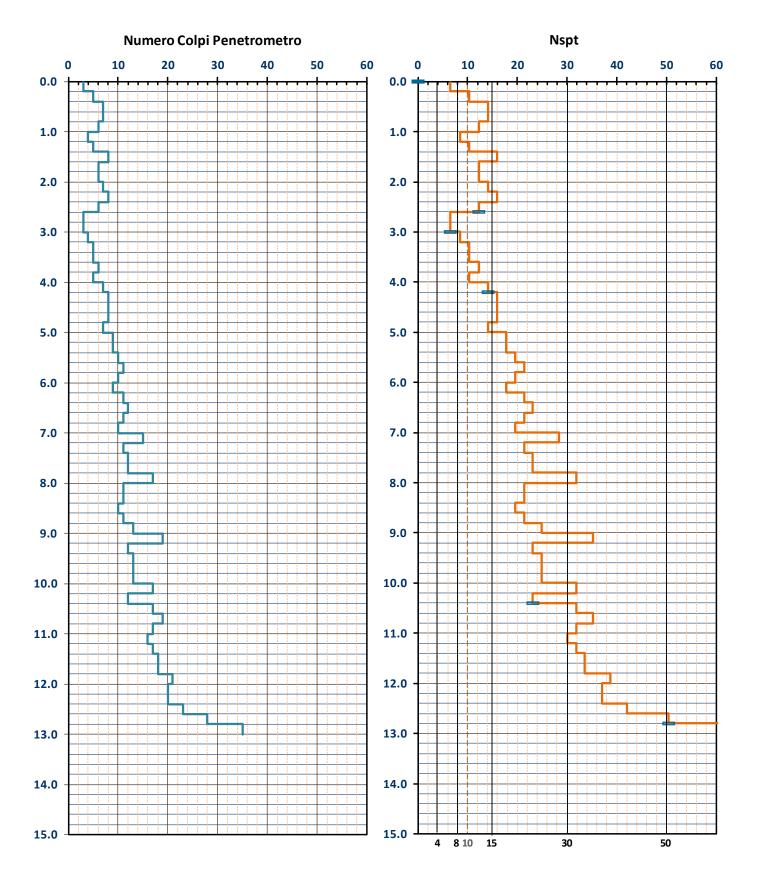

COMMITTENTE:	GAUDENZI	LOCALITA':	PAVULLO
COMUNE:	PAVULLO NEL FRIGNANO	DATA:	28/08/2015
NOME FILE:	GAUDENZI DPSH-02	PENETROMETRO	DPSH

GRAFICO PROVA PENETROMETRICA DINAMICA DPSH-02

COMMITTENTE:	GAUDENZI	LOCALITA':	PAVULLO
COMUNE:	PAVULLO NEL FRIGNANO	DATA:	28/08/2015
NOME FILE:	GAUDENZI DPSH-02	PENETROMETRO	DPSH

TABELLA PROVA PENETROMETRICA DINAMICA DPSH-03

COMMIT	TENTE:	GAUDEN	NZI			LOCALI	TA':	PAVULLO)			
COMUN	E:	PAVULLO	O NEL FR	RIGNANO		DATA:		10/09/20	15			
NOME F	ILE:	GAUDEN	NZI DPSH	-03		PENETI	ROMETR	0	DPSH	FALDA	NO	
			Natu	ra granu	ılare	Nat	ura Coe	siva				
Н	N	Nspt	ф	Мо	Qa ₁	Cu	Ed	Qa ₂	$\sigma_{'}$	Λ - 1 -	Rpd	Qa₃
			[°]	[kN/m ²]	Asta	[kN/m ²]	[kN/m ²]					
0.20	4	8.5	26.3	6003	34	57	5073	98	1.9	1	2979	119
0.40	5	10.4	27.5	7359	59	69	6219	121	5.7	1	3724	149
0.60	5	10.4		7359	76	69	6219		9.5	1	3724	149
0.80	5	10.4		7359	94	69	6219	123	13.3	1	3724	149
1.00	4	8.5	26.3	6003	96	57	5073	103	17.1	2	2762	110
1.20	4	8.5	26.3	6003	111	57	5073	104	20.9	2	2762	110
1.40	2	4.5	23.2	3194	89	30	2699		24.7	2	1381	55
1.60	2	4.5	23.2	3194	100	30	2699	61	28.5	2	1381	55
1.80	2	4.5	23.2	3194	111	30	2699	62	32.3	2	1381	55
2.00	2	4.5	23.2	3194	122	30	2699	64	36.1	3	1287	51
2.20	2	4.5	23.2	3194	134	30	2699	65	39.9	3	1287	51
2.40	3	6.5	24.9	4618	174	44	3903	89	43.7	3	1930	77
2.60	4	8.5	26.3	6003	219	57	5073	113	47.5	3	2574	103
2.80	4	8.5	26.3	6003	235	57	5073	114	51.3	3	2574	103
3.00	4	8.5	26.3	6003	250	57	5073	115	55.1	4	2410	96
3.20	4	8.5	26.3	6003	266	57	5073	117	58.9	4	2410	96
3.40	5	10.4	27.5	7359	323	69	6219	140	62.7	4	3012	120
3.60	7	14.1	29.5	10011	433	94	8460	184	66.5	4	4217	169
3.80	7	14.1	29.5	10011	455	94	8460	185	70.3	4	4217	169
4.00	5	10.4	27.5	7359	375	69	6219	144	74.1	5	2832	113
4.20	6	12.2	28.6	8694	445	82	7347	167	77.9	5	3398	136
4.40	6	12.2	28.6	8694	465	82	7347	168	81.7	5	3398	136
4.60	6	12.2	28.6	8694	485	82	7347	169	85.5	5	3398	136
4.80	5	10.4	27.5	7359	446	69	6219		89.3	5	2832	113
5.00	5	10.4	27.5	7359	463	69	6219	150	93.1	6	2672	107
5.20	7	14.1	29.5	10011	610	94	8460	194	96.9	6	3740	150
5.40	7	14.1	29.5	10011	632	94	8460	195	100.7	6	3740	150
5.60	8	15.9	30.5	11314	729	107	9561	218	104.5	6	4274	171
5.80	6	12.2	28.6	8694	604	82	7347	177	108.3	6	3206	128
6.00	7	14.1	29.5	10011	699	94	8460	199	112.1	7	3540	142
6.20	9	17.8	31.3	12603	889	119	10651	242	115.9	7	4551	182
6.40	9	17.8	31.3	12603	916	119	10651	244	119.7	7	4551	182
6.60	35	62.0		44006	4543	415	37188		123.5	7	17700	708

H = Profondità del letto dello strato elementare

N = Numero dei colpi del penetrometro per singolo avanzamento

Nspt = Numero dei colpi della prova SPT (Standard Penetration Test)

 $\phi^{\circ} = N_{spt} < 30 \text{ (15-Nspt)}^{.5} + 15 \text{ ; } N_{spt} > 30 \text{ -0.0015-} N_{spt}^2 + 0.353 \cdot N_{spt} + 26.782$ (Road Bridge Specification; Carter & Bentley)

 $Mo = 710 \cdot Nspt$ [Modulo Confinato] [kN/m²] (Farrent)

 $Qa_1 = [(h \cdot \gamma' \cdot Nq) + (\frac{1}{2}b \cdot \gamma \cdot N\gamma)] / 3;$ b=1 m [kN/m²] (Qa Terzaghi; Nq, Ny Meyerhof)

 $Ed = 600 \cdot Nspt \quad [Modulo \ Edometrico] \qquad \qquad [kN/m^2] \quad (Stroud \ \& \ Butler)$

 $\begin{array}{lll} Cu=6.7 \cdot N_{spt} & [kN/m^2] & (Terzaghi) \\ Qa_2=\left[\left(h \cdot \gamma'\right) + \left(C_u \cdot N_c\right)\right]/3; & [kN/m^2] & (Qa Terzaghi; Nc=5.14) \\ \end{array}$

TABELLA STRATI PROVA PENETROMETRICA N DPSH-03

(Parametri Geotecnici e Carico Ammissibile)

COMMIT	TENTE:	GAUDEN	Z			LOCALITA': PAVULLO					
COMUNE	Ē:	PAVULLO	NEL FRIC	SNANO		DATA: 10/09/2015					
NOME FI	NOME FILE GAUDENZI DPSH-03					PENETR	OMETRO	DPSH			
Η	Ν	Nspt	Natu	ıra granu	lare	Nat	ura Coes	siva	FORM	JLA OLAI	NDESI
[m]			ф	Мо	Qa ₁	Cu	Ed	Qa ₂	$\sigma_{\Lambda'}$	Rpd	Qa ₃
[m]			[°]	[kN/m ²]							
1.2	4.5	9.4	26.9	6681	78	63	5646	112	11.4	3279	131
2.4	2.2	4.8	23.5	3431	122	32	2899	67	34.2	1441	58
6.4	6.1	12.3	28.5	8740	497	82	7386	169	83.6	3377	135
6.6	35.0	62.0	42.9	44006	4543	415	37188	753	123.5	17700	708

H = Profondità del letto dello strato elementare N = Numero dei colpi del penetrometro per singolo avanzamento Nspt = Numero dei colpi della prova SPT (Standard Penetration Test) $Mo = 710 \cdot Nspt$ [Modulo Confinato] [kN/m²] (Farrent) Qa1 = $[(h \cdot \gamma' \cdot Nq) + (\frac{1}{2} \cdot b \cdot \gamma \cdot N\gamma)] / 3$ [kN/m²] (Qa Terzaghi; Nq, Nγ Meyerhof) b=1 m $Cu = 6.7 \cdot N_{Spt}$ [kN/m²] (Terzaghi) Ed = 600 · Nspt [Modulo Edometrico] [kN/m²] (Stroud & Butler) Qa2 = $[(h \cdot \gamma') + (Cu \cdot Nc)] / 3$ [kN/m²] (Qa Terzaghi; Nc=5.14) $Rpd = M^2 \cdot H / [A \cdot e \cdot (M + P)]$ [kN/m²] (Formula degli Olandesi) $Qa_3 = (R_{dp} / 15 \div 30); \quad Qa = (R_{pd} / 25)$ [kN/m²] (Carico Ammissibile, Sanglerat)

DENSITA' - GRADO OCR - PARAMETRI ELASTICI DPSH-03

(Densità Sovraconsolidazione Moduli Flastici)

	(Delisita, Soviaconsolidazione, Moduli Elastici)										
COMMIT	TENTE:	GAUDEN	ZI			LOCALITA': PAVULLO					
COMUNE	Ē:	PAVULLO	NEL FRI	SNANO		DATA: 10/09/2015					
NOME FILE GAUDENZI DPSH-03						PENETROMETRO DPSH					
Н	N	Nspt					ıra granu	lare	Natura Coesiva		
[m]	[media]	[media]	Hm	γ	σν	Dr	Ks	Es	OCR	Ks	Ed
F-1-1	[modad]	[modici]	[media]	[kN/m ³]	[kN/m ²]	[%]	[kN/m ³]	[kN/m ²]	-	[kN/m ³]	[kN/m ²]
1.2	4.5	9.4	0.6	18.4	11.4	71.4	9413	7529	8.0	13418	5646
2.4	2.2	4.8	1.8	17.5	34.2	45.2	14600	4309	0.1	8025	2899
6.4	6.1	12.3	4.4	18.7	83.6	59.4	59632	39013	>4	20301	7386
6.6	35.0	62.0	6.5	21.2	123.5	100.0	545213	108466	>4	90319	37188

H = Profondità del letto dello strato elementare

N = Numero dei colpi del penetrometro per singolo avanzamento

Nspt = Numero dei colpi della prova SPT (Standard Penetration Test)

Hm = Profondità al centro dello strato

[m]

 γ = Peso di volume del terreno

[kN/m²]

 σ_v = Pressione litostatica

[kN/m²] [%]

 $Dr = 21 \cdot [(10-Nspt)/(\sigma v + 7)]^{0.5}$

[Densità relativa]

(Gibbs & Holtz) (Bowles, 1988)

 $Ks = Qa \cdot 120 - (Qa = carico ammissibile in KPa)$

[Modulo di Reazione - Winkler] [kN/m³]

[Modulo Elastico secante] [kN/m²]

 $E_s = E_s = (105-35\cdot D_r)\cdot N_{spt}$; OCR>4 $E_s = (525-350*D_r)\cdot N_{spt}$ OCR = $(Cu / (\sigma v \cdot KK))^{1.25}$

(Jamiolkowski, 1988)

[Sovraconsolidamento]

[-] (Ladd & Foot)

Ed = 600 · Nspt (bassa plasticità)

[Modulo Edometrico] [kN/m²]

(Stroud & Butler)

TABELLA STATISTICA 5° PERCENTILE (Cu, φ) - PROVA PENETROMETRICA DPSH-03 (valori caratteristici e di progetto (M2) per fondazioni superficiali)

COMMIT	TENTE:	GAUDEN	ZI			LOCALIT	LOCALITA': PAVULLO				
COMUNE	Ē:	PAVULLO	NEL FRI	SNANO		DATA: 10/09/2015					
NOME FI	LE	GAUDEN	ZI DPSH-0	3		PENETROMETRO DPSH					
Н	N	Nspt	Dati	N	latura gra	anulare (¢	nulare (φ) Natura Coesi			esiva (Cu)
[m]	[media]	[media]	Num	фm	dev	φk	фd	Cum	dev	Cuk	Cud
[iii]	[media]	[media]	INUITI	[°]	stand	[°]	[°]	[kN/m ²]	stand	[kN/m ²]	[kN/m ²]
1.2	4.5	9.4	6	26.9	0.7	26.3	21.5	63	7.0	57	41
2.4	2.2	4.8	6	23.5	0.7	22.9	18.7	32	5.5	27	20
6.4	6.1	12.3	20	28.5	1.6	27.9	22.9	82	19.6	75	53
6.6	35.0	62.0	1	42.9		39.4	33.3	415		269	192

Num = Numero dei dati presi in considerazione per strato

фm = Dato medio dell'angolo di attrito interno dello strato

 ϕ_k = Valore caratteristico dell'angolo di attrito (5° percentile di distribuzione della media)

 ϕ_d = Valore di progetto dell'angolo di attrito interno del terreno (M2) [$\gamma \phi = 1.25$]

Cum= Dato medio della coesione non drenata

 C_{uk} = Valore caratteristico della coesione non drenata (5° percentile di distribuzione della media)

 C_{ud} = Valore di progetto della coesione non drenata (M2) [γ_{Cu} = 1.4]

TABELLA STATISTICA 5° PERCENTILE (Cu, φ) - PROVA PENETROMETRICA DPSH-03 (valori caratteristici e di progetto (M1) per pali)

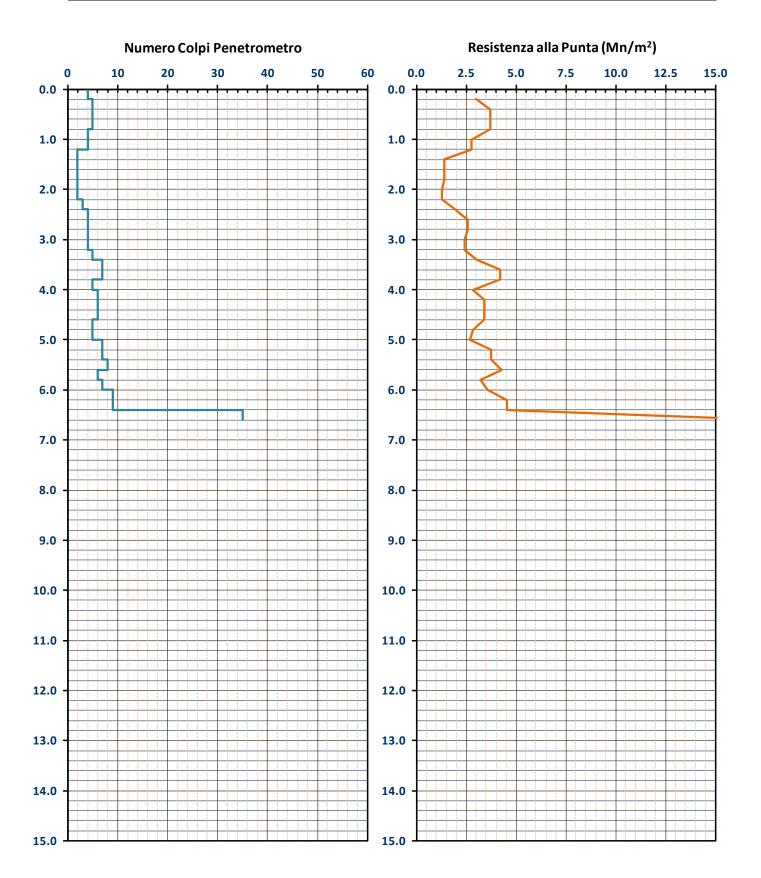
			(vaioi	Carallei	isuci e ui	progetto	(IVII) pei	paii)			
COMMIT	TENTE:	GAUDEN	ZI			LOCALIT	A' :	PAVULLO			
COMUNE	Ē:	PAVULLO	NEL FRI	SNANO		DATA:		10/09/2015			
NOME FI	LE	GAUDEN	ZI DPSH-0	3	PENETROMETRO DPSH						
Н	N	Nspt	Dati	N	latura gra	anulare (φ) Natura Coesiva (Cu)				1)	
[m]	[media]	[media]	Num	фm	dev	фk	фd	Cum	dev	Cuk	Cud
[111]	[modia]	[modia]	rvarri	[°]	stand	[°]	[°]	[kN/m ²]	stand	[kN/m ²]	[kN/m ²]
1.2	4.5	9.4	6	26.9	0.7	25.8	25.8	63	7.0	52	52
2.4	2.2	4.8	6	23.5	0.7	22.4	22.4	32	5.5	24	24
6.4	6.1	12.3	20	28.5	1.6	25.8	25.8	82	19.6	55	55
6.6	35.0	62.0	1	42.9		38.0	38.0	415		269	269

Num = Numero dei dati presi in considerazione per strato

 ϕ_k = Valore caratteristico dell'angolo di attrito (5° percentile di distribuzione della media)

 ϕ_d = Valore di progetto dell'angolo di attrito interno del terreno (M1) [$\gamma \phi = 1.0$]

Cum= Dato medio della coesione non drenata


Cuk = Valore caratteristico della coesione non drenata (5° percentile di distribuzione della media)

 C_{ud} = Valore di progetto della coesione non drenata (M1) [γ_{Cu} = 1.0]

GRAFICO PROVA PENETROMETRICA DINAMICA DPSH-03

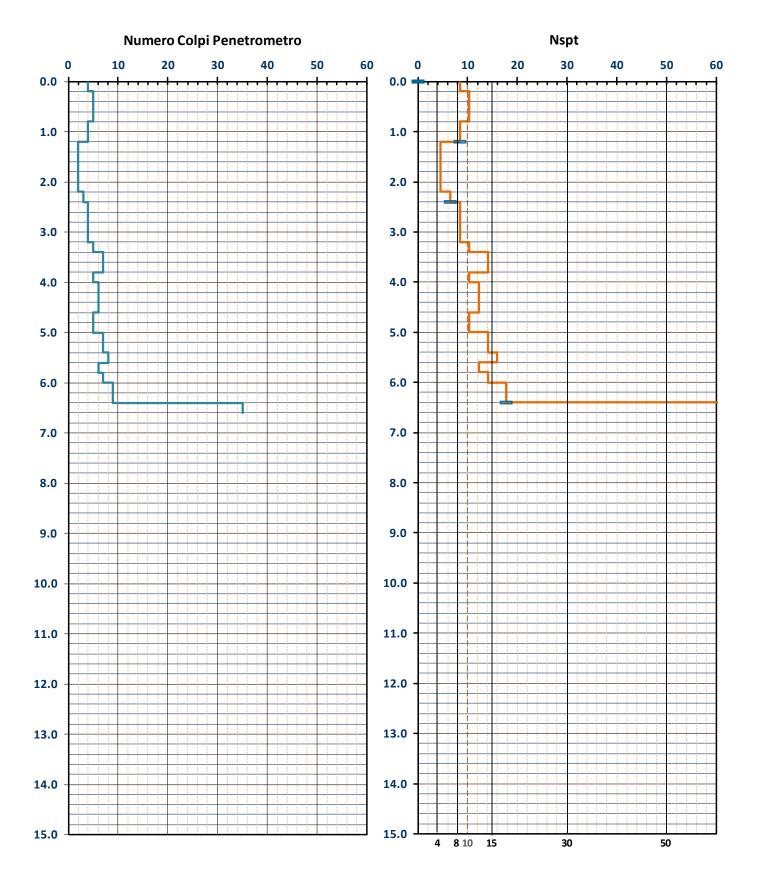

COMMITTENTE:	GAUDENZI	LOCALITA':	PAVULLO
COMUNE:	PAVULLO NEL FRIGNANO	DATA:	10/09/2015
NOME FILE:	GAUDENZI DPSH-03	PENETROMETRO	DPSH

GRAFICO PROVA PENETROMETRICA DINAMICA DPSH-03

COMMITTENTE:	GAUDENZI	LOCALITA':	PAVULLO
COMUNE:	PAVULLO NEL FRIGNANO	DATA:	10/09/2015
NOME FILE:	GAUDENZI DPSH-03	PENETROMETRO	DPSH

TABELLA PROVA PENETROMETRICA DINAMICA DPSH-04

COMMIT	TENTE:	GAUDEN	IZI			LOCALI	TA':	PAVULLO	C			
COMUNI	E:	PAVULLO	O NEL FR	RIGNANO		DATA:		10/09/20	15			
NOME F	ILE:	GAUDEN	IZI DPSH	-04		PENET	ROMETR	0	DPSH	FALDA	NO	
			Natu	ra granu	ılare	Nat	ura Coes	siva				
Н	Ν	Nspt	ф	Мо	Qa ₁	Cu	Ed	Qa ₂	σ_{\wedge}	Λ - 1 -	Rpd	Qa₃
			[°]	[kN/m ²]	Asta	[kN/m ²]	[kN/m ²]					
0.20	4	8.5	26.3	6003	34	57	5073	98	1.9	1	2979	119
0.40	5	10.4	27.5	7359	59	69	6219	121	5.7	1	3724	149
0.60	7	14.1	29.5	10011	101	94	8460	165	9.5	1	5214	209
0.80	9	17.8	31.3	12603	157	119	10651	208	13.3	1	6704	268
1.00	6	12.2	28.6	8694	128	82	7347	146	17.1	2	4143	166
1.20	3	6.5	24.9	4618	94	44	3903	82	20.9	2	2071	83
1.40	2	4.5	23.2	3194	89	30	2699	60	24.7	2	1381	55
1.60	3	6.5	24.9	4618	121	44	3903	84	28.5	2	2071	83
1.80	5	10.4	27.5	7359	182	69	6219	130	32.3	2	3452	138
2.00	2	4.5	23.2	3194	122	30	2699	64	36.1	3	1287	51
2.20	3	6.5	24.9	4618	161	44	3903	88	39.9	3	1930	77
2.40	4	8.5	26.3	6003	204	57	5073	112	43.7	3	2574	103
2.60	4	8.5	26.3	6003	219	57	5073	113	47.5	3	2574	103
2.80	5	10.4	27.5	7359	270	69	6219	136	51.3	3	3217	129
3.00	5	10.4	27.5	7359	287	69	6219	137	55.1	4	3012	120
3.20	3	6.5	24.9	4618	228	44	3903	94	58.9	4	1807	72
3.40	5	10.4	27.5	7359	323	69	6219	140	62.7	4	3012	120
3.60	5	10.4	27.5	7359	340	69	6219	141	66.5	4	3012	120
3.80	6	12.2	28.6	8694	405	82	7347	164	70.3	4	3615	145
4.00	5	10.4	27.5	7359	375	69	6219	144	74.1	5	2832	113
4.20	12	23.1	33.6	16412	822	155	13869	291	77.9	5	6796	272
4.40	7	14.1	29.5	10011	522	94	8460	189	81.7	5	3964	159
4.60	7	14.1	29.5	10011	544	94	8460	190	85.5	5	3964	159
4.80	10	19.6	32.1	13882	771	131	11731	254	89.3	5	5663	227
5.00	8	15.9	30.5	11314	655	107	9561	214	93.1	6	4274	171
5.20	9	17.8	31.3	12603	753	119	10651	236	96.9	6	4809	192
5.40	8	15.9	30.5	11314	704	107	9561	216	100.7	6	4274	171
5.60	11	21.3	32.9	15151	978	143	12804	280	104.5	6	5877	235
5.80	11	21.3	32.9	15151	1011	143	12804	281	108.3	6	5877	235
6.00	9	17.8	31.3	12603	862	119	10651	241	112.1	7	4551	182
6.20	10	19.6	32.1	13882	980	131	11731	263	115.9	7	5057	202
6.40	11	21.3	32.9	15151	1109	143	12804	285	119.7	7	5563	223
6.60	12	23.1	33.6	16412	1249	155	13869	307	123.5	7	6069	243
6.80	10	19.6	32.1	13882	1069	131	11731	267	127.3	7	5057	202
7.00	18	33.6	36.9	23829	2027	225	20137	429	131.1	8	8641	346
7.20	35	62.0	42.9	44006	4914	415	37188	756	134.9	8	16801	672

H = Profondità del letto dello strato elementare N = Numero dei colpi del penetrometro per singolo avanzamento Nspt = Numero dei colpi della prova SPT (Standard Penetration Test) $\phi^{\circ} = N_{spt} < 30 (15 \cdot N_{spt})^{.5} + 15 ; N_{spt} > 30 -0.0015 \cdot N_{spt}^{2} + 0.353 \cdot N_{spt} + 26.782$ (Road Bridge Specification; Carter & Bentley) [kN/m²] (Farrent) Mo = 710 · Nspt [Modulo Confinato]

Qa₁= $[(h\cdot \gamma'\cdot Nq) + (\% b\cdot \gamma\cdot N\gamma)] / 3;$ b=1 m [kN/m²] (Qa Terzaghi; Nq, Nγ Meyerhof)

Ed = 600 · Nspt [Modulo Edometrico] [kN/m²] (Stroud & Butler) $Cu = 6.7 \cdot N_{spt}$ [kN/m²] (Terzaghi)

Qa₂= $[(h \cdot \gamma') + (Cu \cdot Nc)] / 3;$ [kN/m²] (Qa Terzaghi; Nc=5.14) Rdp= $M^2 \cdot H / [A \cdot e \cdot (M + P)]$ [kN/m²] (Formula degli Olandesi)

 $Qa_3 = (R_{dp}/15 \div 30); Qa = (R_{pd}/25)$ [kN/m²] (Carico Ammissibile, Sanglerat)

Pagina 73 5L-I7-LQ-L6

TABELLA STRATI PROVA PENETROMETRICA N DPSH-04

(Parametri Geotecnici e Carico Ammissibile)

COMMIT	TENTE:	GAUDEN	ZI			LOCALIT	A' :	PAVULLO			
COMUNE	Ē:	PAVULLO	NEL FRIC	SNANO		DATA:		10/09/201	5		
NOME FILE GAUDENZI DPSH-04					PENETR	OMETRO	DPSH				
Н	N	Nspt	Natu	ıra granu	lare	Nat	ura Coes	siva	FORM	JLA OLA	NDESI
[m]			ф	Мо	Qa ₁	Cu	Ed	Qa ₂	σv'	Rpd	Qa ₃
[m]			[°]	[kN/m ²]							
1.0	6.2	12.6	28.6	8934	96	84	7550	148	9.5	4553	182
1.8	3.3	7.0	25.1	4947	121	47	4181	89	26.6	2244	90
2.0	2.0	4.5	23.2	3194	122	30	2699	64	36.1	1287	51
2.2	3.0	6.5	24.9	4618	161	44	3903	88	39.9	1930	77
3.0	4.5	9.4	26.9	6681	245	63	5646	124	49.4	2844	114
3.2	3.0	6.5	24.9	4618	228	44	3903	94	58.9	1807	72
4.6	6.7	13.5	29.1	9601	476	91	8113	180	74.1	3885	155
6.8	9.9	19.4	32.0	13759	922	130	11627	259	108.3	5188	208
7.0	18.0	33.6	36.9	23829	2027	225	20137	429	131.1	8641	346
7.2	35.0	62.0	42.9	44006	4914	415	37188	756	134.9	16801	672

 $\begin{aligned} &N = \text{ Numero dei colpi del penetrometro per singolo avanzamento} \\ &N \text{spt} = \text{ Numero dei colpi della prova SPT (Standard Penetration Test)} \\ &\varphi^\circ = \text{ N}_{\text{spt}} < 30 \text{ } (15 \cdot \text{Nspt})^5 + 15; \quad \text{N}_{\text{spt}} > 30 \cdot 0.0015 \cdot \text{N}_{\text{spt}}^2 + 0.353 \cdot \text{N}_{\text{spt}} + 26.782} \\ &Mo = 710 \cdot \text{ Nspt} \quad [\text{Modulo Confinato}] \\ &Qa1 = \left[\left(h \cdot \gamma' \cdot \text{Nq} \right) + \left(\frac{1}{2} \cdot b \cdot \gamma \cdot \text{N\gamma} \right) \right] / 3 \\ &b = 1 \text{ m} \end{aligned} \end{aligned}$ (Road Bridge Specification - Carter & Bentley) $\begin{aligned} &\text{Mo} = \frac{1}{2} \left[\left(h \cdot \gamma' \cdot \text{Nq} \right) + \left(\frac{1}{2} \cdot b \cdot \gamma \cdot \text{N\gamma} \right) \right] / 3 \\ &\text{Nest modulo Specification of the location of the locatio$

DENSITA' - GRADO OCR - PARAMETRI ELASTICI DPSH-04

(Densità, Sovraconsolidazione, Moduli Elastici)

COMMIT	ΓENTE:	GAUDEN	ZI			LOCALIT	A' :	PAVULLO			
COMUNE	:	PAVULLO	NEL FRI	SNANO		DATA:		10/09/201	5		
NOME FI	LE	GAUDEN	ZI DPSH-0	4		PENETR	OMETRO	DPSH			
H	N	Nspt				Natu	ıra granu	lare	Nat	ura Coes	siva
[m]	[media]	[media]	Hm	γ	σν	Dr	Ks	Es	OCR	Ks	Ed
1004	1		[media]	[kN/m ³]	[kN/m ²]	[%]	[kN/m ³]	[kN/m ²]	-	[kN/m ³]	[kN/m ²]
1.0	6.2	12.6	0.5	18.8	9.5	83.5	11499	9533	1.5	17714	7550
1.8	3.3	7.0	1.4	18.0	26.6	56.4	14576	5941	0.3	10662	4181
2.0	2.0	4.5	1.9	17.4	36.1	43.2	14683	4042	0.1	7640	2699
2.2	3.0	6.5	2.1	17.9	39.9	51.1	19313	5666	0.2	10556	3903
3.0	4.5	9.4	2.6	18.4	49.4	59.0	29421	7939	0.3	14938	5646
3.2	3.0	6.5	3.1	17.9	58.9	47.2	27310	5756	0.2	11316	3903
4.6	6.7	13.5	3.9	18.9	74.1	64.3	57107	11154	1.4	21591	8113
6.8	9.9	19.4	5.7	19.4	108.3	69.2	110631	54781	>4	31026	11627
7.0	18.0	33.6	6.9	20.0	131.1	85.8	243258	75425	>4	51475	20137
7.2	35.0	62.0	7.1	21.0	134.9	100.0	589664	108466	>4	90775	37188

H = Profondità del letto dello strato elementare

H = Profondità del letto dello strato elementare

N = Numero dei colpi del penetrometro per singolo avanzamento

Nspt = Numero dei colpi della prova SPT (Standard Penetration Test)

Hm = Profondità al centro dello strato

 γ = Peso di volume del terreno

 σ_v = Pressione litostatica

 $Dr = 21 \cdot [(10 \cdot Nspt) / (\sigma v + 7)]^{0.5}$ [Densità relativa] [%] (Gibbs & Holtz)

[m]

[kN/m²]

[kN/m²]

 $\begin{aligned} & \text{Ks = Qa \cdot 120 - (Qa = carico ammissibile in KPa)} & \text{[Modulo di Reazione - Winkler]} & \text{[kN/m³]} & \text{(Bowles, 1988)} \\ & \text{Es = Es=(105-35-Dr)} \cdot N_{spt}; \text{ OCR>4} & \text{Es=(525-350*Dr)} \cdot N_{spt} & \text{[Modulo Elastico secante]} & \text{[kN/m²]} & \text{(Jamiolkowski,1988)} \end{aligned}$

TABELLA STATISTICA 5° PERCENTILE (Cu, φ) - PROVA PENETROMETRICA DPSH-04 (valori caratteristici e di progetto (M2) per fondazioni superficiali)

					1 3						
COMMIT	TENTE:	GAUDEN	ZI	•		LOCALIT	A' :	PAVULLO		•	
COMUNE	:	PAVULLO	NEL FRI	GNANO		DATA:		10/09/201	5		
NOME FILE GAUDENZI DPSH-04						PENETR	OMETRO	DPSH			
Н	N	Nspt	Dati	N	latura gra	anulare (¢)	N	latura Co	esiva (Cu)
Fee 1	for a dial	for a dial	Num	фm	dev	φk	фd	Cum	dev	Cuk	Cud
[m]	[media]	[media]	Num	[°]	stand	[°]	[°]	[kN/m ²]	stand	[kN/m ²]	[kN/m ²]
1.0	6.2	12.6	5	28.6	1.9	27.6	22.7	84	23.9	70	50
1.8	3.3	7.0	4	25.1	1.8	24.1	19.7	47	16.4	38	27
2.0	2.0	4.5	1	23.2		21.3	17.3	30		20	14
2.2	3.0	6.5	1	24.9		22.8	18.6	44		28	20
3.0	4.5	9.4	4	26.9	0.7	25.8	21.1	63	7.4	51	37
3.2	3.0	6.5	1	24.9		22.8	18.6	44		28	20
4.6	6.7	13.5	7	29.1	2.2	27.3	22.5	91	30.5	66	47
6.8	9.9	19.4	11	32.0	1.0	31.4	26.1	130	15.7	121	86
7.0	18.0	33.6	1	36.9		33.9	28.3	225		145	104
7.2	35.0	62.0	1	42.9		39.4	33.3	415		269	192

Num = Numero dei dati presi in considerazione per strato

φ_k = Valore caratteristico dell'angolo di attrito (5° percentile di distribuzione della media)

 ϕ_d = Valore di progetto dell'angolo di attrito interno del terreno (M2) [$\gamma \phi = 1.25$]

Cum= Dato medio della coesione non drenata

Cuk = Valore caratteristico della coesione non drenata (5° percentile di distribuzione della media)

 C_{ud} = Valore di progetto della coesione non drenata (M2) [γ_{Cu} = 1.4]

TABELLA STATISTICA 5° PERCENTILE (Cu, φ) - PROVA PENETROMETRICA DPSH-04 (valori caratteristici e di progetto (M1) per pali)

							\ /	/			
COMMIT	TENTE:	GAUDEN	ZI			LOCALIT	A' :	PAVULLO			
COMUNE	:	PAVULLO	NEL FRI	GNANO		DATA:		10/09/201	5		
NOME FILE GAUDENZI DPSH-04						PENETR	OMETRO	DPSH			
Н	N	Nspt	Dati	N	latura gra	anulare (ф	o)	N	latura Co	esiva (Cu)
Fee 1	for a dial	for a dial	Num	фm	dev	φk	фd	Cum	dev	Cuk	Cud
[m]	[media]	[media]	Num	[°]	stand	[°]	[°]	[kN/m ²]	stand	[kN/m ²]	[kN/m ²]
1.0	6.2	12.6	5	28.6	1.9	25.3	25.3	84	23.9	55	55
1.8	3.3	7.0	4	25.1	1.8	22.2	22.2	47	16.4	30	30
2.0	2.0	4.5	1	23.2		20.5	20.5	30		20	20
2.2	3.0	6.5	1	24.9		22.0	22.0	44		28	28
3.0	4.5	9.4	4	26.9	0.7	23.8	23.8	63	7.4	41	41
3.2	3.0	6.5	1	24.9		22.0	22.0	44		28	28
4.6	6.7	13.5	7	29.1	2.2	25.5	25.5	91	30.5	50	50
6.8	9.9	19.4	11	32.0	1.0	30.3	30.3	130	15.7	106	106
7.0	18.0	33.6	1	36.9	•	32.7	32.7	225		145	145
7.2	35.0	62.0	1	42.9	•	38.0	38.0	415		269	269

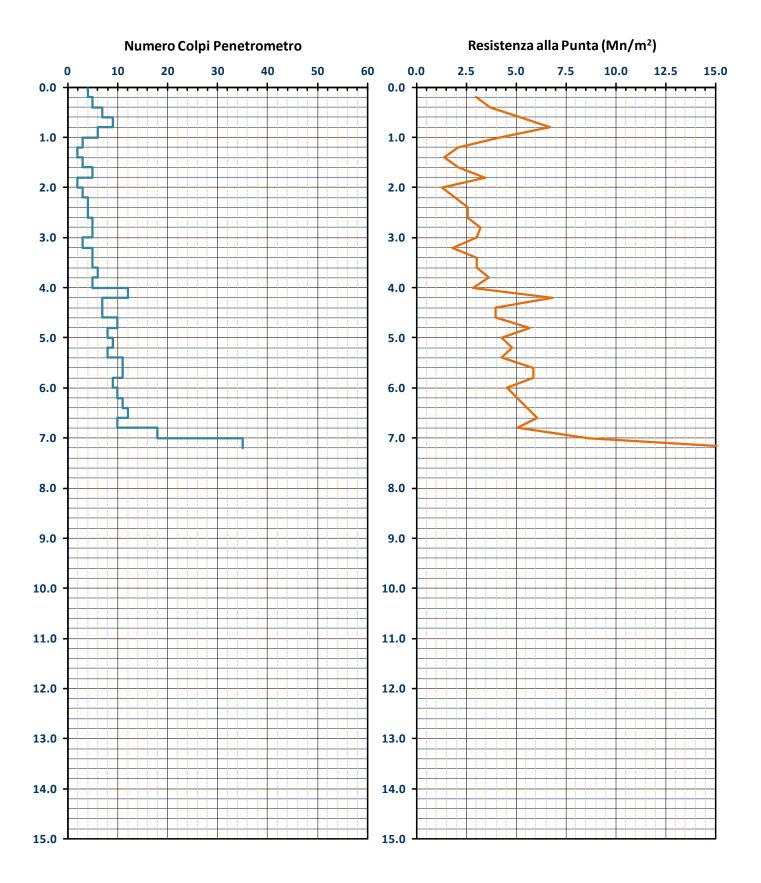
Num = Numero dei dati presi in considerazione per strato

 ϕ_m = Dato medio dell'angolo di attrito interno dello strato

 $\varphi_{k} = \text{Valore caratteristico dell'angolo di attrito (5° percentile di distribuzione della media)}$

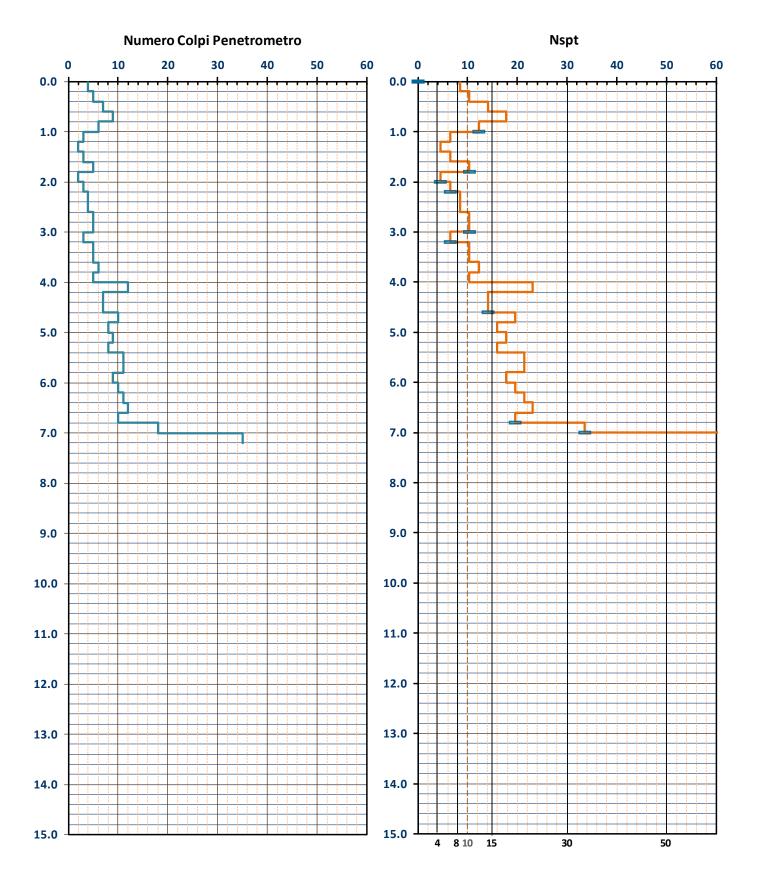
 ϕ_d = Valore di progetto dell'angolo di attrito interno del terreno (M1) [$\gamma \phi$ = 1.0]

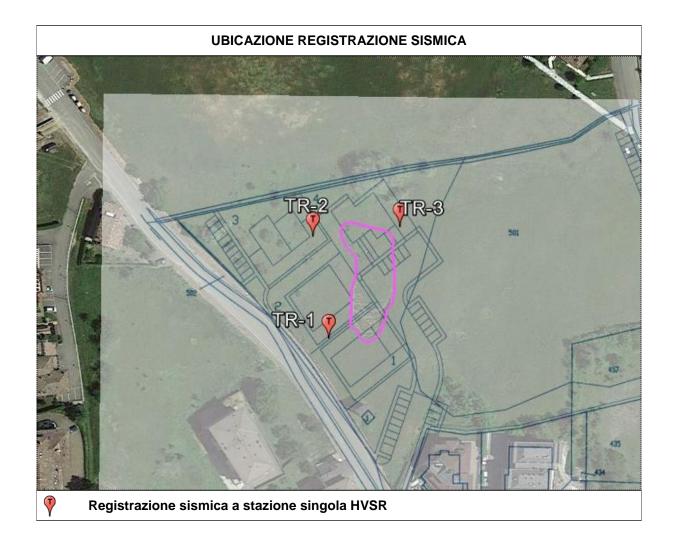
Cum= Dato medio della coesione non drenata


 $C_{\text{Uk}} = \text{Valore caratteristico della coesione non drenata (5° percentile di distribuzione della media)}$

 C_{ud} = Valore di progetto della coesione non drenata (M1) [γ_{Cu} = 1.0]

GRAFICO PROVA PENETROMETRICA DINAMICA DPSH-04


COMMITTENTE:	GAUDENZI	LOCALITA':	PAVULLO
COMUNE:	PAVULLO NEL FRIGNANO	DATA:	10/09/2015
NOME FILE:	GAUDENZI DPSH-04	PENETROMETRO	DPSH


GRAFICO PROVA PENETROMETRICA DINAMICA DPSH-04

COMMITTENTE:	GAUDENZI	LOCALITA':	PAVULLO
COMUNE:	PAVULLO NEL FRIGNANO	DATA:	10/09/2015
NOME FILE:	GAUDENZI DPSH-04	PENETROMETRO	DPSH

ALLEGATO B

Registrazioni Sismiche - Parametri Sismici

15_056 TR_01

Instrument: TRS-0016/01-06

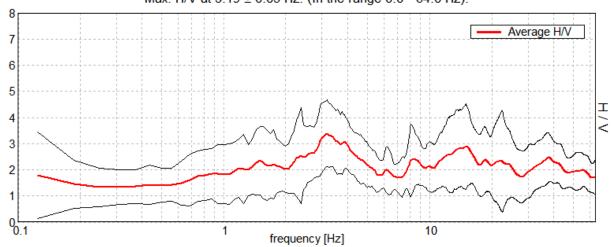
Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

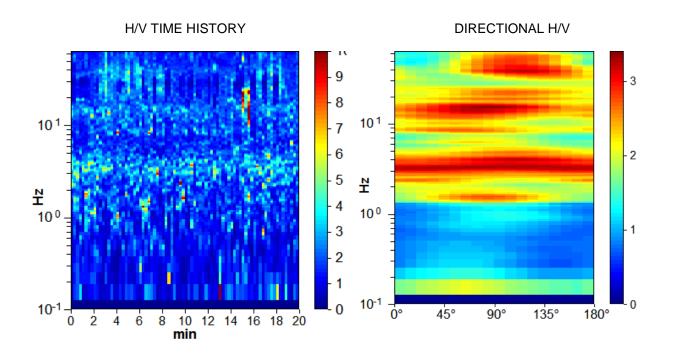
GPS location: 010°49.7689 E, 44°20.5022 N (717.0 m)

(UTC time synchronized to the first recording sample): not available in this acquisition mode + 0 samples

Satellite no.: 05

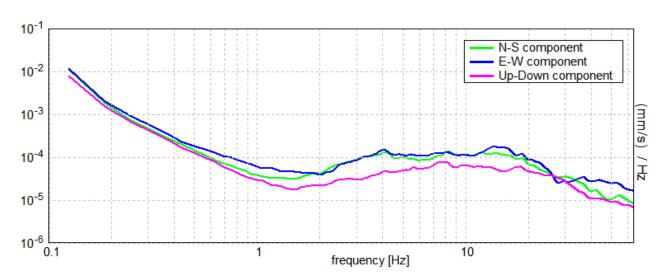
Trace length: 0h20'00". Analysis performed on the entire trace.

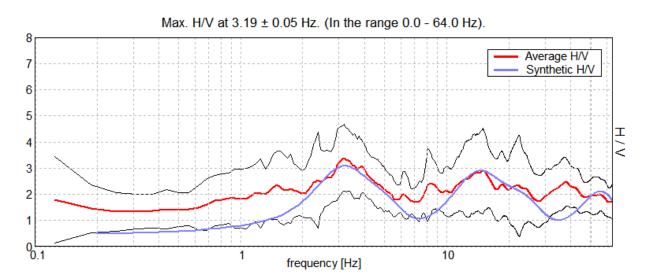

Sampling rate: 128 Hz Window size: 15 s


Smoothing type: Triangular window

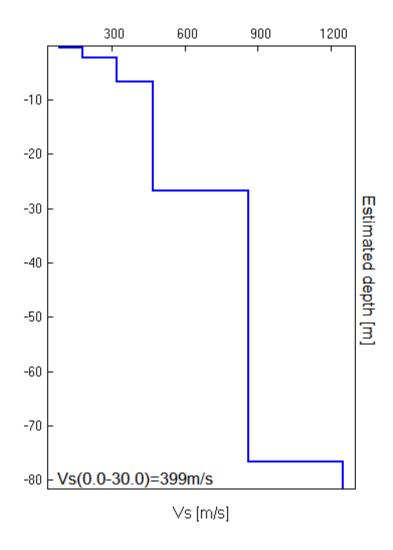
Smoothing: 5%

HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 3.19 ± 0.05 Hz. (In the range 0.0 - 64.0 Hz).



SINGLE COMPONENT SPECTRA


EXPERIMENTAL vs. SYNTHETIC H/V

Bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
0.40	0.40	85	0.40
2.20	1.80	180	0.40
6.70	4.50	320	0.35
26.70	20.00	470	0.35
76.70	50.00	860	0.35
inf.	inf.	1250	0.35

Vs(0.0-30.0)=399m/s

[According to the SESAME, 2005 guidelines. Please read carefully the *Grilla* manual before interpreting the following tables.]

Max. H/V at 3.19 ± 0.05 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve

[All 3 should be fulfilled]

$f_0 > 10 / L_w$	3.19 > 0.67	OK	
$n_c(f_0) > 200$	3825.0 > 200	OK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 78 times	OK	
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$			

Criteria for a clear H/V peak

[At least 5 out of 6 should be fulfilled]

Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$			NO
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$	7.125 Hz	OK	
A ₀ > 2	3.39 > 2	OK	
$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$	0.00849 < 0.05	OK	
$\sigma_{\rm f} < \epsilon({\rm f}_0)$	0.02706 < 0.15938	OK	
$\sigma_{A}(f_0) < \theta(f_0)$	0.6358 < 1.58	OK	

L _w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
À ₀	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f - ` `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,,,,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$							
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0							
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀		
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58		
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20		

15 056 TR 02

Instrument: TRS-0016/01-06

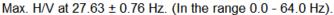
Start recording: 17/09/15 11:56:02 End recording: 17/09/15 12:16:03

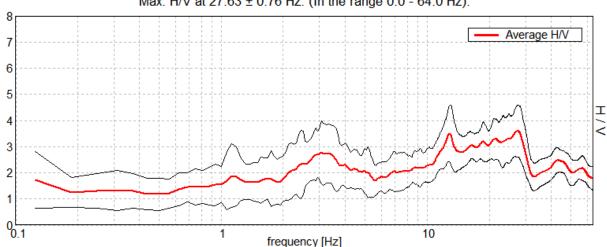
Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

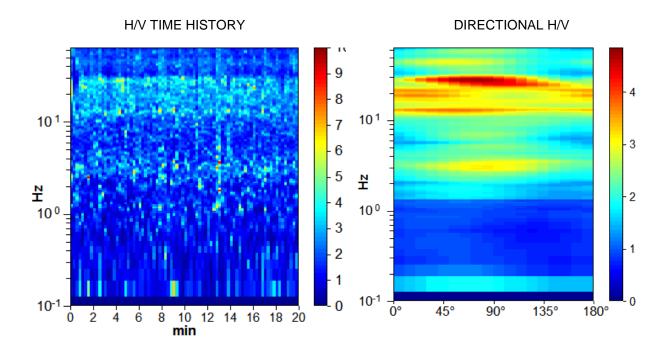
GPS location: 010°49.7520 E, 44°20.5219 N (736.5 m)

(UTC time synchronized to the first recording sample): not available in this acquisition mode + 0 samples

Satellite no.: 04

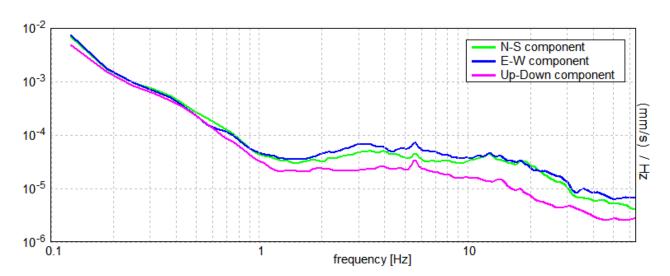

Trace length: 0h20'00". Analysis performed on the entire trace.

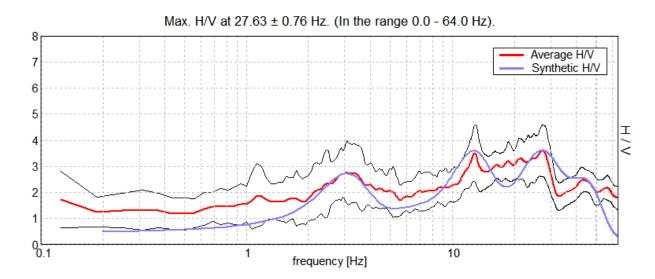

Sampling rate: 128 Hz Window size: 15 s


Smoothing type: Triangular window

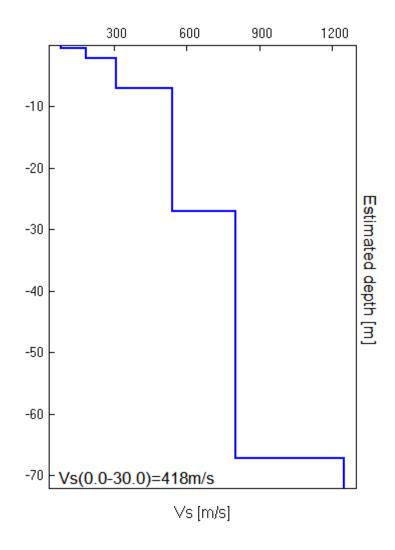
Smoothing: 5%

HORIZONTAL TO VERTICAL SPECTRAL RATIO





SINGLE COMPONENT SPECTRA


EXPERIMENTAL vs. SYNTHETIC H/V

Bottom of the layer [m]	m of the layer [m] Thickness [m]		Poisson ratio
0.50	0.50	80	0.40
2.10	1.60	185	0.40
7.10	5.00	310	0.35
27.10	20.00	540	0.35
67.10	40.00	800	0.35
inf.	inf.	1250	0.35

Vs(0.0-30.0)=418m/s

[According to the SESAME, 2005 guidelines. Please read carefully the *Grilla* manual before interpreting the following tables.]

Max. H/V at 27.63 ± 0.76 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve

[All 3 should be fulfilled]

f ₀ > 10 / L _w	27.63 > 0.67	OK	
$n_c(f_0) > 200$	33150.0 > 200	OK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 664 times	OK	
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$			

Criteria for a clear H/V peak

[At least 5 out of 6 should be fulfilled]

Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$			NO
Exists f^+ in $[f_0, 4f_0] \mid A_{H/V}(f^+) < A_0 / 2$	62.938 Hz	OK	
A ₀ > 2	3.59 > 2	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.01378 < 0.05	OK	
$\sigma_{\rm f} < \epsilon({\sf f}_0)$	0.38061 < 1.38125	OK	
$\sigma_{A}(f_0) < \theta(f_0)$	0.4962 < 1.58	OK	

L_w	window length
$n_{\rm w}$	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f -	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
, ,	be multiplied or divided
$\sigma_{logH/V}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$							
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0							
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀		
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58		
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20		

15_056 TR_03

Instrument: TRS-0016/01-06

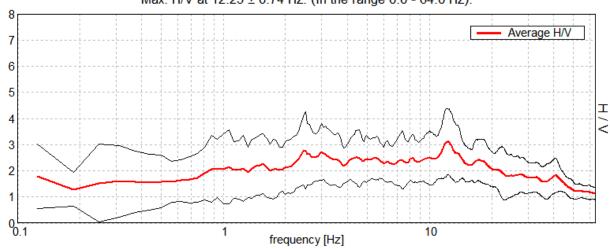
Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

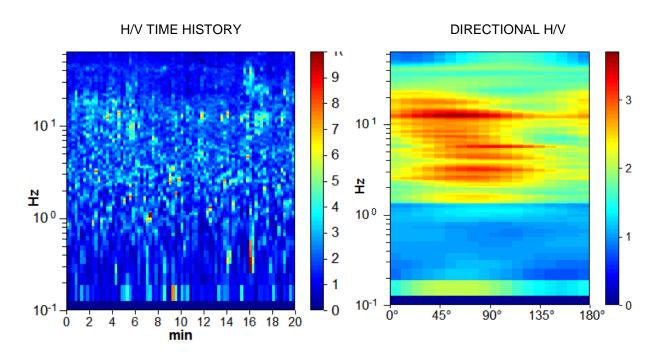
GPS location: 010°49.7714 E, 44°20.5194 N (731.1 m)

(UTC time synchronized to the first recording sample): not available in this acquisition mode + 0 samples

Satellite no.: 05

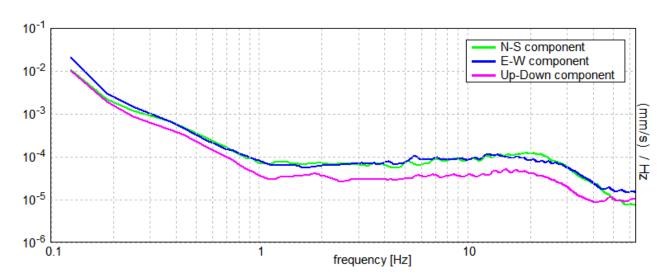
Trace length: 0h20'00". Analysis performed on the entire trace.

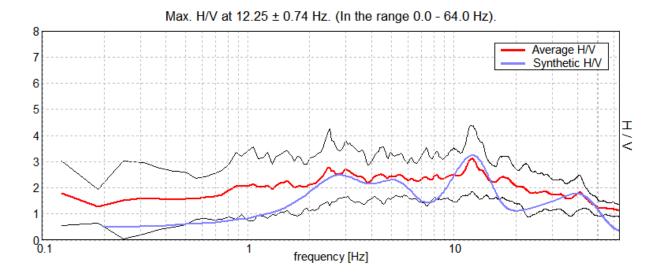

Sampling rate: 128 Hz Window size: 15 s


Smoothing type: Triangular window

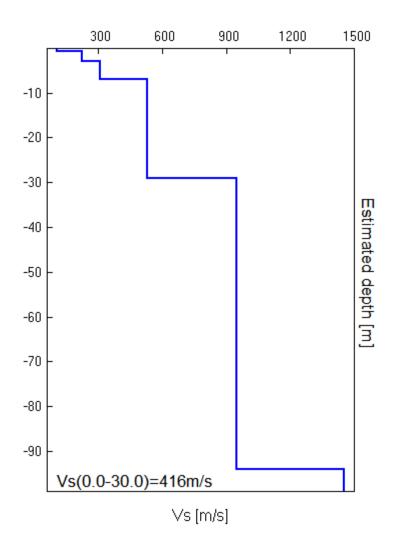
Smoothing: 5%

HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 12.25 ± 0.74 Hz. (In the range 0.0 - 64.0 Hz).



SINGLE COMPONENT SPECTRA


EXPERIMENTAL vs. SYNTHETIC H/V

Bottom of the layer [m]	er [m] Thickness [m] Vs [m/s]		Poisson ratio
0.70	0.70	110	0.40
3.00	2.30	225	0.38
7.00	4.00	310	0.35
29.00	22.00	530	0.35
94.00	65.00	950	0.35
inf.	inf.	1450	0.35

Vs(0.0-30.0)=416m/s

According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

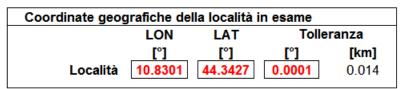
Max. H/V at 12.25 ± 0.74 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve

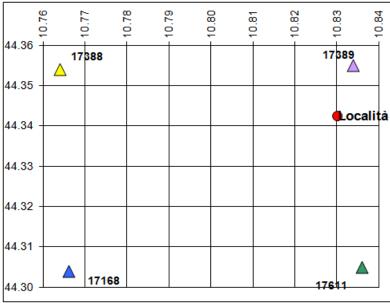
[All 3 should be fulfilled]

$f_0 > 10 / L_w$	12.25 > 0.67	OK	
$n_c(f_0) > 200$	14700.0 > 200	OK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 295 times	OK	
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$			

Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]


Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0/2$			NO
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$	44.625 Hz	OK	
A ₀ > 2	3.11 > 2	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.03001 < 0.05	OK	
$\sigma_{\rm f} < \varepsilon({\rm f}_0)$	0.36767 < 0.6125	OK	
$\sigma_{A}(f_0) < \theta(f_0)$	0.6252 < 1.58	OK	

	_ _
L_w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f -	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{logH/V}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$


Threshold values for σ_f and $\sigma_A(f_0)$							
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0							
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀		
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58		
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20		

Pagina 91 5L-I7-LQ-L6

Coordinate geografiche dei 4 punti del reticolo								
IE)	L	.ON	LA1	Γ	DIST [°]	[k	m]
173	89	1	0.834	44.3	355	0.013	1.4	410
173	88	1	0.764	44.3	354	0.049	5.4	409
176	11	1	0.836	44.3	805	0.038	4.5	217
176	10	1	0.766	44.3	804	0.060	6.0	674
10.76	10.77	10.78	10.79	10.80	10.81	10.82	10.83	10.84

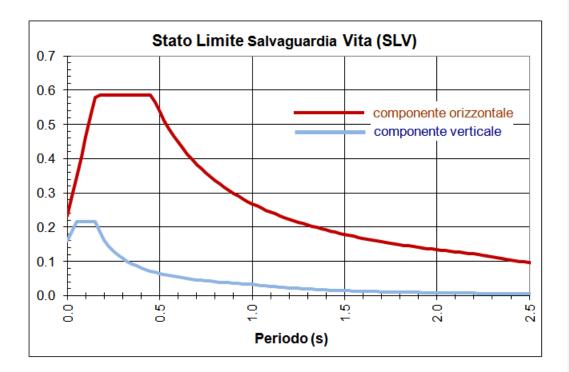
CARATTERISTICHE TERRENO

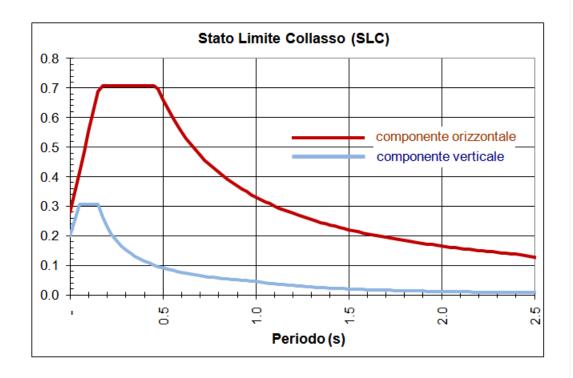
Topografia		T1
Coeff. topografico	S _T	1.0
Categoria suolo		C

VITA DELLA STRUTTURA

Vita nominale	V _N	50	[anni]
Classe d'uso	Cu	Ш	
Vita di riferimento	V_R	50	[anni]

PARAMETRI SISMICI


	SL	P _{VR}	T _R	a _g	Fo	T _C *
SLE	Operatività	81%	30	0.056	2.50	0.25
SLE	Danno	63%	50	0.070	2.49	0.26
SLU	Salv. Vita	10%	475	0.159	2.52	0.29
SLU	Collasso	5%	975	0.200	2.53	0.30


s	Tb	T _C	T _D	Fν
1.500	0.138	0.415	1.824	0.799
1.500	0.142	0.426	1.879	0.889
1.459	0.153	0.458	2.237	1.357
1.396	0.156	0.469	2.401	1.527

SPETTRI ELASTICI SLU

Tr = 475 anni (SLV)Tr = 975 anni (SLC)

